Backgrounds. TSP-1 is a glycoprotein that functions in the biology of bladder cancer. We investigated the relationship between the distribution of TSP-1-1223 A/G polymorphism (rs2169830) and the clinical characteristics of bladder cancer. Materials and Methods. TaqMan assay was performed to determine the genotype of 609 cases and 670 control subjects in a Chinese population. Logistic regression was used to assess the association between the polymorphism and the risk of bladder cancer. Quantitative real-time polymerase chain reaction was performed to determine TSP-1 mRNA expression. Survival curves were generated using the Kaplan-Meier method. Results. No significant differences were detected in the genotype frequencies of healthy control subjects and patients with bladder cancer. By contrast, the time until the first recurrence differed significantly between genotypes ( ). The expression of TSP-1 mRNA in bladder cancer tissues was lower in patients with an AG genotype than in those with an AA genotype. The lowest expression was observed in patients with a GG genotype. Conclusions. In conclusion, TSP-1-1223 A/G polymorphism may contribute to the recurrence of bladder cancer in Chinese population. 1. Introduction Bladder cancer is the second most common genitourinary malignancy and the sixth most common cancer in the world [1]. In China, the incidence of bladder cancer continues to increase [2]. The incidence of bladder cancer also increases with age, and the peak is reached approximately at the age of 60 years; bladder cancer is three times more common in men than in women [3]. Among the newly diagnosed cases of transitional cell carcinomas, approximately 75% to 80% of these cases present superficial tumours; 50% to 70% of these superficial tumours relapse within five years; and roughly 10% to 20% progress to a more aggressive disease [4]. Bladder cancer is a multifactorial disease mediated by genetic abnormalities, environmental factors, and chronic irritation [5]. Although many individuals are exposed to these risk factors, only a fraction of exposed individuals develop bladder cancer in their lifetime, suggesting that genetic variations may participate in bladder carcinogenesis. Thrombospondin-1 (TSP-1) is an adhesive glycoprotein with a size of 450?kD initially discovered in platelets, where TSP-1 is sequestered in a platelet α-granule [6]. TSP-1 has been implicated in regulating numerous biological activities, including cell adhesion, cell migration, proliferation, angiogenesis, inflammation, and wound healing [7–12]. TSP-1 also elicits different
References
[1]
R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012.
[2]
E. Liu, Y. Xiang, F. Jin, et al., “Cancer incidence trends in urban Shanghai, China (1972-1999),” Tumor, vol. 24, no. 1, pp. 11–13, 2004.
[3]
D. S. Kaufman, W. U. Shipley, and A. S. Feldman, “Bladder cancer,” The Lancet, vol. 374, no. 9685, pp. 239–249, 2009.
[4]
H. Rubben, W. Lutzeyer, N. Fischer et al., “Natural history and treatment of low and high risk superficial bladder tumors,” Journal of Urology, vol. 139, no. 2, pp. 283–285, 1988.
[5]
G. A. Giovino, S. A. Mirza, J. M. Samet, et al., “Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys,” The Lancet, vol. 380, pp. 668–679, 2012.
[6]
D. A. Walz, “Thrombospondin as a mediator of cancer cell adhesion in metastasis,” Cancer and Metastasis Reviews, vol. 11, no. 3-4, pp. 313–324, 1992.
[7]
G. Taraboletti, D. Roberts, L. A. Liotta, and R. Giavazzi, “Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor,” The Journal of Cell Biology, vol. 111, no. 2, pp. 765–772, 1990.
[8]
G. Taraboletti, D. D. Roberts, and L. A. Liotta, “Thrombodspondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains,” The Journal of Cell Biology, vol. 105, no. 5, pp. 2409–2415, 1987.
[9]
B. J. Nickoloff, R. S. Mitra, B. L. Riser, V. M. Dixit, and J. Varani, “Modulation of keratinocyte motility. Correlation with production of extracellular matrix molecules in response to growth promoting and antiproliferative factors,” American Journal of Pathology, vol. 132, no. 3, pp. 543–551, 1988.
[10]
M. J. Reed, P. Puolakkainen, T. F. Lane, D. Dickerson, P. Bornstein, and E. H. Sage, “Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization,” Journal of Histochemistry and Cytochemistry, vol. 41, no. 10, pp. 1467–1477, 1993.
[11]
J. Varani, V. M. Dixit, and S. E. G. Fligiel, “Thrombospondin-induced attachment and spreading of human squamous carcinoma cells,” Experimental Cell Research, vol. 167, no. 2, pp. 376–390, 1986.
[12]
D. D. Roberts, J. A. Sherwood, and V. Ginsburg, “Platelet thrombospondin mediates attachment and spreading of human melanoma cells,” The Journal of Cell Biology, vol. 104, no. 1, pp. 131–139, 1987.
[13]
C. Nucera, A. Porrello, Z. A. Antonello et al., “B-RafV600Eand thrombospondin-1 promote thyroid cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 23, pp. 10649–10654, 2010.
[14]
W. Wei, K. Beihua, Y. Qifeng, and Q. Xun, “Hepatocyte growth factor enhances ovarian cancer cell invasion through downregulation of thrombospondin-1,” Cancer Biology and Therapy, vol. 9, no. 2, pp. 79–87, 2010.
[15]
M. K. McElroy, S. Kaushal, H. S. Tran Cao et al., “Upregulation of thrombospondin-1 and angiogenesis in an aggressive human pancreatic cancer cell line selected for high metastasis,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1779–1786, 2009.
[16]
D. P. Zubac, L. Bostad, B. Kihl, T. Seidal, T. Wentzel-Larsen, and S. A. Haukaas, “The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival,” Journal of Urology, vol. 182, no. 5, pp. 2144–2149, 2009.
[17]
G. D. Grossfeld, D. A. Ginsberg, J. P. Stein et al., “Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression,” Journal of the National Cancer Institute, vol. 89, no. 3, pp. 219–227, 1997.
[18]
J. C. Goddard, C. D. Sutton, J. L. Jones, K. J. O'Byrne, and R. C. Kockelbergh, “Reduced Thrombospondin-1 at presentation predicts disease progression in superficial bladder cancer,” European Urology, vol. 42, no. 5, pp. 464–468, 2002.
[19]
X. Wu, X. Lin, C. P. Dinney, J. Gu, and H. B. Grossman, “Genetic polymorphism in bladder cancer,” Frontiers in Bioscience, vol. 12, no. 1, pp. 192–213, 2007.
[20]
B.-L. A. Hannah, T. M. Misenheimer, M. M. Pranghofer, and D. F. Mosher, “A polymorphism in thrombospondin-1 associated with familial premature coronary artery disease alters Ca2+ binding,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 51915–51922, 2004.
[21]
J. I. Zwicker, F. Peyvandi, R. Palla et al., “The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering von Willebrand factor multimer size,” Blood, vol. 108, no. 4, pp. 1280–1283, 2006.
[22]
C. D. Laherty, T. M. Gierman, and V. M. Dixit, “Characterization of the promoter region of the human thrombospondin gene. DNA sequences within the first intron increase transcription,” The Journal of Biological Chemistry, vol. 264, no. 19, pp. 11222–11227, 1989.
[23]
N.-H. Guo, N. S. Templeton, H. Al-Barazi et al., “Thrombospondin-1 promotes α3β1 integrin-mediated adhesion and neurite- like outgrowth and inhibits proliferation of small cell lung carcinoma cells,” Cancer Research, vol. 60, no. 2, pp. 457–466, 2000.
[24]
D. Albo, J. P. Arnoletti, A. Castiglioni et al., “Thrombospondin (TSP) and transforming growth factor beta 1 (TGF-β) promote human A549 lung carcinoma cell plasminogen activator inhibitor type 1 (PAI-1) production and stimulate tumor cell attachment in vitro,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 857–865, 1994.
[25]
Y. Yamashita, S. Sendo, T. Hosokawa et al., “Exogenous thrombospondin stimulates the proliferation of non-thrombospondin-producing cells,” International Journal of Oncology, vol. 13, no. 2, pp. 355–359, 1998.
[26]
B. Ren, K. O. Yee, J. Lawler, and R. Khosravi-Far, “Regulation of tumor angiogenesis by thrombospondin-1,” Biochimica et Biophysica Acta, vol. 1765, no. 2, pp. 178–188, 2006.
[27]
E. K. Rofstad and B. A. Graff, “Thrombospondin-1-mediated metastasis suppression by the primary tumor in human melanoma xenografts,” Journal of Investigative Dermatology, vol. 117, no. 5, pp. 1042–1049, 2001.
[28]
R. J. Jin, C. Kwak, S. G. Lee et al., “The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts,” Cancer Gene Therapy, vol. 7, no. 12, pp. 1537–1542, 2000.
[29]
M. Streit, P. Velasco, L. F. Brown et al., “Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas,” American Journal of Pathology, vol. 155, no. 2, pp. 441–452, 1999.
[30]
M. Tenan, G. Fulci, M. Albertoni et al., “Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells,” Journal of Experimental Medicine, vol. 191, no. 10, pp. 1789–1797, 2000.
[31]
G. P. Tuszynski, T. B. Gasic, and V. L. Rothman, “Thrombospondin, a potentiator of tumor cell metastasis,” Cancer Research, vol. 47, no. 15, pp. 4130–4133, 1987.
[32]
S. Y. Wong, A. T. Purdie, and P. Han, “Thrombospondin and other possible related matrix proteins in malignant and benign breast disease: an immunohistochemical study,” American Journal of Pathology, vol. 140, no. 6, pp. 1473–1482, 1992.
[33]
S. C. Campbell, O. V. Volpert, M. Ivanovich, and N. P. Bouck, “Molecular mediators of angiogenesis in bladder cancer,” Cancer Research, vol. 58, no. 6, pp. 1298–1304, 1998.
[34]
U. Agrawal, A. K. Mishra, P. Salgia, S. Verma, N. K. Mohanty, and S. Saxena, “Role of tumor suppressor and angiogenesis markers in prediction of recurrence of non muscle invasive bladder cancer,” Pathology and Oncology Research, vol. 17, no. 1, pp. 91–101, 2011.
[35]
S. Meyers, J. R. Downing, and S. W. Hiebert, “Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions,” Molecular and Cellular Biology, vol. 13, no. 10, pp. 6336–6345, 1993.
[36]
J. H. Kim, S. Lee, J. K. Rho, and S. Y. Choe, “AML1, the target of chromosomal rearrangements in human leukemia, regulates the expression of human complement receptor type 1 (CR1) gene,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 9, pp. 933–940, 1999.
[37]
T. Tanaka, K. Tanaka, S. Ogawa et al., “An acute myeloid leukemia gene, AML 1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms,” EMBO Journal, vol. 14, no. 2, pp. 341–350, 1995.
[38]
J. C. Rodríguez-Manzaneque, T. F. Lane, M. A. Ortega, R. O. Hynes, J. Lawler, and M. L. Iruela-Arispe, “Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12485–12490, 2001.
[39]
K. Gupta, P. Gupta, R. Wild, S. Ramakrishnan, and R. P. Hebbel, “Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis,” Angiogenesis, vol. 3, no. 2, pp. 147–158, 1999.
[40]
N. Ferrara and T. Davis-Smyth, “The biology of vascular endothelial growth factor,” Endocrine Reviews, vol. 18, no. 1, pp. 4–25, 1997.
[41]
J. P. Crew, T. O'Brien, M. Bradburn et al., “Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer,” Cancer Research, vol. 57, no. 23, pp. 5281–5285, 1997.