全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genome Stability Pathways in Head and Neck Cancers

DOI: 10.1155/2013/464720

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies. 1. Introduction Carcinogenesis and evolution of the cancer genome are driven by genomic instability. We review here advances in our understanding of the pathways that preserve genome integrity that have improved insight into cancer behaviour, prediction, prognosis, and personalised therapy. Traditional anticancer therapy has exploited the inherent genomic instability of malignancy; however, this mutagenic pressure also promotes the emergence of treatment resistance, invasion, and metastasis (Figure 1). Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most-common cancer in the developed world [1, 2] and represents a therapeutically-challenging, behaviourally-heterogenous category of disease. Genomic instability is a defining characteristic of HNSCC [3]. Subregional differences in patterns in risk, treatment response, and prognosis in HNSCC are underpinned by aetiological factors that affect genomic stability in different ways. In HNSCC, the principal subsites of the upper aerodigestive tract are oral cavity (including tongue, floor of mouth, and buccal surface), nasopharynx, oropharynx (including

References

[1]  J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010.
[2]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[3]  T. Maeda, A. Jikko, H. Hiranuma, and H. Fuchihata, “Analysis of genomic instability in squamous cell carcinoma of the head and neck using the random amplified polymorphic DNA method,” Cancer Letters, vol. 138, no. 1-2, pp. 183–188, 1999.
[4]  M. Merlano, V. Vitale, R. Rosso et al., “Treatment of advanced squamous-cell carcinoma of the head and neck with alternating chemotherapy and radiotherapy,” The New England Journal of Medicine, vol. 327, no. 16, pp. 1115–1121, 1992.
[5]  J.-P. Pignon, A. L. Ma?tre, E. Maillard, and J. Bourhis, “Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients,” Radiotherapy and Oncology, vol. 92, no. 1, pp. 4–14, 2009.
[6]  S. Furness, A.-M. Glenny, H. V. Worthington et al., “Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy,” Cochrane Database of Systematic Reviews, vol. 4, Article ID CD006386, 2011.
[7]  J. P. Pignon, J. Bourhis, C. Domenge, and L. Designé, “Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data,” The Lancet, vol. 355, no. 9208, pp. 949–955, 2000.
[8]  R. M. Logan, “Advances in understanding of toxicities of treatment for head and neck cancer,” Oral Oncology, vol. 45, no. 10, pp. 844–848, 2009.
[9]  D. Murdoch, “Standard, and novel cytotoxic and molecular-targeted, therapies for HNSCC: an evidence-based review,” Current Opinion in Oncology, vol. 19, no. 3, pp. 216–221, 2007.
[10]  M. R. Posner, D. M. Hershock, C. R. Blajman et al., “Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer,” The New England Journal of Medicine, vol. 357, no. 17, pp. 1705–1715, 2007.
[11]  T. Boveri, “Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris,” Journal of Cell Science, vol. 121, supplement 1, pp. 1–84, 2008.
[12]  R. Hakem, “DNA-damage repair; the good, the bad, and the ugly,” The EMBO Journal, vol. 27, no. 4, pp. 589–605, 2008.
[13]  V. G. Gorgoulis, L.-V. F. Vassiliou, P. Karakaidos et al., “Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions,” Nature, vol. 434, no. 7035, pp. 907–913, 2005.
[14]  R. A. DiTullio Jr., T. A. Mochan, M. Venere et al., “53BP1 functions in a ATM-dependent checkpoint pathway that is constitutively activated in human cancer,” Nature Cell Biology, vol. 4, no. 12, pp. 998–1002, 2002.
[15]  J. Bartek, J. Bartkova, and J. Lukas, “DNA damage signalling guards against activated oncogenes and tumour progression,” Oncogene, vol. 26, no. 56, pp. 7773–7779, 2007.
[16]  E. M. Sturgis and P. M. Cinciripini, “Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers?” Cancer, vol. 110, no. 7, pp. 1429–1435, 2007.
[17]  M. Hoffmann, T. Kahn, C. G. Mahnke, T. Goeroegh, B. M. Lippert, and J. A. Werner, “Prevalence of human papillomavirus in squamous cell carcinoma of the head and neck determined by polymerase chain reaction and Southern blot hybridization: proposal for optimized diagnostic requirements,” Acta Oto-Laryngologica, vol. 118, no. 1, pp. 138–144, 1998.
[18]  N. Termine, V. Panzarella, S. Falaschini et al., “HPV in oral squamous cell carcinoma vs head and neck squamous cell carcinoma biopsies: a meta-analysis (1988–2007),” Annals of Oncology, vol. 19, no. 10, pp. 1681–1690, 2008.
[19]  K. Kansy, O. Thiele, and K. Freier, “The role of human papillomavirus in oral squamous cell carcinoma: myth and reality,” Oral and Maxillofacial Surgery, 2012.
[20]  S. Marur, G. D'Souza, W. H. Westra, and A. A. Forastiere, “HPV-associated head and neck cancer: a virus-related cancer epidemic,” The Lancet Oncology, vol. 11, no. 8, pp. 781–789, 2010.
[21]  F. Dayyani, C. J. Etzel, M. Liu, C.-H. Ho, S. M. Lippman, and A. S. Tsao, “Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC),” Head and Neck Oncology, vol. 2, no. 1, article 15, 2010.
[22]  K. K. Ang, J. Harris, R. Wheeler, et al., “Human papillomavirus and survival of patients with oropharyngeal cancer,” The New England Journal of Medicine, vol. 363, no. 1, pp. 24–35, 2010.
[23]  G. D'Souza, A. R. Kreimer, R. Viscidi et al., “Case-control study of human papillomavirus and oropharyngeal cancer,” The New England Journal of Medicine, vol. 356, no. 19, pp. 1944–1956, 2007.
[24]  G. D'Souza, Y. Agrawal, J. Halpern, S. Bodison, and M. L. Gillison, “Oral sexual behaviors associated with prevalent oral human papillomavirus infection,” Journal of Infectious Diseases, vol. 199, no. 9, pp. 1263–1269, 2009.
[25]  S. M. Schwartz, J. R. Daling, D. R. Doody et al., “Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection,” Journal of the National Cancer Institute, vol. 90, no. 21, pp. 1626–1636, 1998.
[26]  P. Lassen, J. G. Eriksen, S. Hamilton-Dutoit, T. Tramm, J. Alsner, and J. Overgaard, “Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 1992–1998, 2009.
[27]  M. L. Gillison, G. D'Souza, W. Westra et al., “Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers,” Journal of the National Cancer Institute, vol. 100, no. 6, pp. 407–420, 2008.
[28]  S. J. Smeets, B. J. M. Braakhuis, S. Abbas et al., “Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus,” Oncogene, vol. 25, no. 17, pp. 2558–2564, 2006.
[29]  S. M. Wilting, S. J. Smeets, P. J. Snijders et al., “Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck,” BMC Medical Genomics, vol. 2, no. 1, article 32, 2009.
[30]  K. Syrjanen, S. Syrjanen, and M. Lamberg, “Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis,” International Journal of Oral Surgery, vol. 12, no. 6, pp. 418–424, 1983.
[31]  M. Scheffner, J. M. Huibregtse, R. D. Vierstra, and P. M. Howley, “The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53,” Cell, vol. 75, no. 3, pp. 495–505, 1993.
[32]  M. Thomas, D. Pim, and L. Banks, “The role of the E6-p53 interaction in the molecular pathogenesis of HPV,” Oncogene, vol. 18, no. 53, pp. 7690–7700, 1999.
[33]  J. A. Mietz, T. Unger, J. M. Huibregtse, and P. M. Howley, “The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein,” The EMBO Journal, vol. 11, no. 13, pp. 5013–5020, 1992.
[34]  O. Stevaux and N. J. Dyson, “A revised picture of the E2F transcriptional network and RB function,” Current Opinion in Cell Biology, vol. 14, no. 6, pp. 684–691, 2002.
[35]  J. W. Harbour and D. C. Dean, “The Rb/E2F pathway: expanding roles and emerging paradigms,” Genes and Development, vol. 14, no. 19, pp. 2393–2409, 2000.
[36]  X. Liu, A. Clements, K. Zhao, and R. Marmorstein, “Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 578–586, 2006.
[37]  J. S. Lewis Jr., W. L. Thorstad, R. D. Chernock et al., “P16 positive oropharyngeal squamous cell carcinoma: an entity with a favorable prognosis regardless of tumor HPV status,” American Journal of Surgical Pathology, vol. 34, no. 8, pp. 1088–1096, 2010.
[38]  D. Lindquist, M. Romanitan, L. Hammarstedt et al., “Human papillomavirus is a favourable prognostic factor in tonsillar cancer and its oncogenic role is supported by the expression of E6 and E7,” Molecular Oncology, vol. 1, no. 3, pp. 350–355, 2007.
[39]  N. F. Schlecht, M. Brandwein-Gensler, G. J. Nuovo et al., “A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer,” Modern Pathology, vol. 24, no. 10, pp. 1295–1305, 2011.
[40]  S. Duensing and K. Münger, “Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability,” Oncogene, vol. 21, no. 40, pp. 6241–6248, 2002.
[41]  S. Duensing, L. Y. Lee, A. Duensing et al., “The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10002–10007, 2000.
[42]  S. Duensing and K. Münger, “Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins,” International Journal of Cancer, vol. 109, no. 2, pp. 157–162, 2004.
[43]  N. Stransky, A. M. Egloff, A. D. Tward et al., “The mutational landscape of head and neck squamous cell carcinoma,” Science, vol. 333, no. 6046, pp. 1157–1160, 2011.
[44]  T. G. Edwards, M. J. Helmus, K. Koeller, J. K. Bashkin, and C. Fisher, “Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways,” Journal of Virology, vol. 87, no. 7, pp. 3979–3989, 2013.
[45]  T. Rieckmann, S. Tribius, T. J. Grob et al., “HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity,” Radiotherapy and Oncology, vol. 107, no. 2, pp. 242–246, 2013.
[46]  T. Yakushiji, K. Uzawa, T. Shibahara, H. Noma, and H. Tanzawa, “Over-expression of DNA methyltransferases and CDKN2A gene methylation status in squamous cell carcinoma of the oral cavity,” International Journal of Oncology, vol. 22, no. 6, pp. 1201–1207, 2003.
[47]  A. L. Reed, J. Califano, P. Cairns et al., “High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma,” Cancer Research, vol. 56, no. 16, pp. 3630–3633, 1996.
[48]  C.-H. Tsai, C.-C. Yang, L. S.-S. Chou, and M.-Y. Chou, “The correlation between alteration of p16 gene and clinical status in oral squamous cell carcinoma,” Journal of Oral Pathology and Medicine, vol. 30, no. 9, pp. 527–531, 2001.
[49]  P. Pande, M. Mathur, N. K. Shukla, and R. Ralhan, “pRB and p16 protein alterations in human oral tumorigenesis,” Oral Oncology, vol. 34, no. 5, pp. 396–403, 1998.
[50]  A. Duray, G. Descamps, C. Decaestecker et al., “Human papillomavirus DNA strongly correlates with a poorer prognosis in oral cavity carcinoma,” Laryngoscope, vol. 122, no. 7, pp. 1558–1565, 2012.
[51]  P. Ernoux-Neufcoeur, M. Arafa, C. Decaestecker et al., “Combined analysis of HPV DNA, p16, p21 and p53 to predict prognosis in patients with stage IV hypopharyngeal carcinoma,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 1, pp. 173–181, 2011.
[52]  C. J. Marsit, B. C. Christensen, E. A. Houseman et al., “Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma,” Carcinogenesis, vol. 30, no. 3, pp. 416–422, 2009.
[53]  A. Merlo, J. G. Herman, L. Mao et al., “5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers,” Nature Medicine, vol. 1, no. 7, pp. 686–692, 1995.
[54]  K.-E. A. Abou-Elhamd and T. N. Habib, “The flow cytometric analysis of premalignant and malignant lesions in head and neck squamous cell carcinoma,” Oral Oncology, vol. 43, no. 4, pp. 366–372, 2007.
[55]  J. Califano, P. van der Riet, W. Westra et al., “Genetic progression model for head and neck cancer: implications for field cancerization,” Cancer Research, vol. 56, no. 11, pp. 2488–2492, 1996.
[56]  U. Bockmühl, G. Wolf, S. Schmidt et al., “Genomic alterations associated with malignancy in head and neck cancer,” Head & Neck, vol. 20, no. 2, pp. 145–151, 1998.
[57]  H. Kiaris, N. Spanakis, M. Ergazaki, G. Sourvinos, and D. A. Spandidos, “Loss of heterozygosity at 9p and 17q in human laryngeal tumours,” Cancer Letters, vol. 97, no. 1, pp. 129–134, 1995.
[58]  P. Cairns, T. J. Polascik, Y. Eby et al., “Frequency of homozygous deletion at p16/CDKN2 in primary human tumours,” Nature Genetics, vol. 11, no. 2, pp. 210–212, 1995.
[59]  P. van der Riet, H. Nawroz, R. H. Hruban et al., “Frequent loss of chromosome 9p21-22 early in head and neck cancer progression,” Cancer Research, vol. 54, no. 5, pp. 1156–1158, 1994.
[60]  M. P. Rosin, X. Cheng, C. Poh et al., “Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia,” Clinical Cancer Research, vol. 6, no. 2, pp. 357–362, 2000.
[61]  A. I. Soder, A. H. N. Hopman, F. C. S. Ramaekers, C. Conradt, and F. X. Bosch, “Distinct nonrandom patterns of chromosomal aberrations in the progression of squamous cell carcinomas of the head and neck,” Cancer Research, vol. 55, no. 21, pp. 5030–5037, 1995.
[62]  W. M. Lydiatt, V. V. V. S. Murty, B. J. Davidson et al., “Homozygous deletions and loss of expression of the CDKN2 gene occur frequently in head and neck squamous cell carcinoma cell lines but infrequently in primary tumors,” Genes, Chromosomes and Cancer, vol. 13, no. 2, pp. 94–98, 1995.
[63]  K. K. Yu, A. M. Zanation, J. R. Moss, and W. G. Yarbrough, “Familial head and neck cancer: molecular analysis of a new clinical entity,” Laryngoscope, vol. 112, no. 9, pp. 1587–1593, 2002.
[64]  R. Cabanillas, A. Astudillo, M. Valle et al., “Novel germline CDKN2A mutation associated with head and neck squamous cell carcinomas and melanomas,” Head and Neck, vol. 35, no. 3, pp. E80–E84, 2013.
[65]  R. Maestro, D. Gasparotto, T. Vukosavljevic, L. Barzan, S. Sulfaro, and M. Boiocchi, “Three discrete regions of deletion at 3p in head and neck cancers,” Cancer Research, vol. 53, no. 23, pp. 5775–5779, 1993.
[66]  R. P. Hogg, S. Honorio, A. Martinez et al., “Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma,” European Journal of Cancer, vol. 38, no. 12, pp. 1585–1592, 2002.
[67]  N. Uzawa, M. A. Yoshida, S. Hosoe, M. Oshimura, T. Amagasa, and T. Ikeuchi, “Functional evidence for involvement of multiple putative tumor suppressor genes on the short arm of chromosome 3 in human oral squamous cell carcinogenesis,” Cancer Genetics and Cytogenetics, vol. 107, no. 2, pp. 125–131, 1998.
[68]  S. Dasgupta, N. Mukherjee, S. Roy et al., “Mapping of the candidate tumor suppressor genes' loci on human chromosome 3 in head and neck squamous cell carcinoma of an Indian patient population,” Oral Oncology, vol. 38, no. 1, pp. 6–15, 2002.
[69]  S.-K. Tai, J. I. Lee, K. K. Ang et al., “Loss of Fhit expression in head and neck squamous cell carcinoma and its potential clinical implication,” Clinical Cancer Research, vol. 10, no. 16, pp. 5554–5557, 2004.
[70]  S. Ghosh, A. Ghosh, G. P. Maiti et al., “Alterations of 3p21.31 tumor suppressor genes in head and neck squamous cell carcinoma: correlation with progression and prognosis,” International Journal of Cancer, vol. 123, no. 11, pp. 2594–2604, 2008.
[71]  H. Blons, J. P. Radicella, O. Laccourreye et al., “Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glycosylase 1 gene in head and neck cancer,” Molecular Carcinogenesis, vol. 26, no. 4, pp. 254–260, 1999.
[72]  C.-Y. Fan, K. L. Liu, H. Y. Huang et al., “Frequent allelic imbalance and loss of protein expression of the DNA repair gene hOGG1 in head and neck squamous cell carcinoma,” Laboratory Investigation, vol. 81, no. 10, pp. 1429–1438, 2001.
[73]  S. S. David, V. L. O'Shea, and S. Kundu, “Base-excision repair of oxidative DNA damage,” Nature, vol. 447, no. 7147, pp. 941–950, 2007.
[74]  E. Eisenstadt, A. J. Warren, J. Porter, D. Atkins, and J. H. Miller, “Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 6, pp. 1945–1949, 1982.
[75]  C. Bernelot-Moens, B. W. Glickman, and A. J. E. Gordon, “Induction of specific frameshift and base substitution events by benzo[a]pyrene diol expoxide in excision-repair-deficient Escherichia coli,” Carcinogenesis, vol. 11, no. 5, pp. 781–785, 1990.
[76]  S. Shibutani, M. Takeshita, and A. P. Grollman, “Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG,” Nature, vol. 349, no. 6308, pp. 431–434, 1991.
[77]  H. Blons and P. Laurent-Puig, “TP53 and head and neck neoplasms,” Human Mutation, vol. 21, no. 3, pp. 252–257, 2003.
[78]  J.-H. Yoon, L. E. Smith, Z. Feng, M.-S. Tang, C.-S. Lee, and G. P. Pfeifer, “Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers,” Cancer Research, vol. 61, no. 19, pp. 7110–7117, 2001.
[79]  U. Bockmühl, S. Petersen, S. Schmidt et al., “Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas,” Cancer Research, vol. 57, no. 23, pp. 5213–5216, 1997.
[80]  U. Bockmühl, K. Schlüns, S. Schmidt, S. Matthias, and I. Petersen, “Chromosomal alterations during metastasis formation of head and neck squamous cell carcinoma,” Genes, Chromosomes and Cancer, vol. 33, no. 1, pp. 29–35, 2002.
[81]  U. Bockmühl, C. S. Ishwad, R. E. Ferrell, and S. M. Gollin, “Association of 8p23 deletions with poor survival in head and neck cancer,” Otolaryngology—Head and Neck Surgery, vol. 124, no. 4, pp. 451–455, 2001.
[82]  C. Toomes, A. Jackson, K. Maguire et al., “The presence of multiple regions of homozygous deletion at the CSMDI locus in oral squamous cell carcinoma question the role of CSMDI in head and neck carcinogenesis,” Genes, Chromosomes and Cancer, vol. 37, no. 2, pp. 132–140, 2003.
[83]  V. A. Papadimitrakopoulou, Y. Oh, A. El-Naggar, J. Izzo, G. Clayman, and L. Mao, “Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer,” Clinical Cancer Research, vol. 4, no. 3, pp. 539–544, 1998.
[84]  H. Nawroz, P. van der Riet, R. H. Hruban, W. Koch, J. M. Ruppert, and D. Sidransky, “Allelotype of head and neck squamous cell carcinoma,” Cancer Research, vol. 54, no. 5, pp. 1152–1155, 1994.
[85]  D. L. van Dyke, M. J. Worsham, M. S. Benninger et al., “Recurrent cytogenetic abnormalities in squamous cell carcinomas of the head and neck region,” Genes, Chromosomes and Cancer, vol. 9, no. 3, pp. 192–206, 1994.
[86]  F. Mertens, B. Johansson, M. H?glund, and F. Mitelman, “Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms,” Cancer Research, vol. 57, no. 13, pp. 2765–2780, 1997.
[87]  M. A. Pershouse, A. K. El-Naggar, K. Hurr, H. Lin, W. K. A. Yung, and P. A. Steck, “Deletion mapping of chromosome 4 in head and neck squamous cell carcinoma,” Oncogene, vol. 14, no. 3, pp. 369–373, 1997.
[88]  G. H. Yoo, H.-J. Xu, J. A. Brennan et al., “Infrequent inactivation of the retinoblastoma gene despite frequent loss of chromosome 13q in head and neck squamous cell carcinoma,” Cancer Research, vol. 54, no. 17, pp. 4603–4606, 1994.
[89]  M. Feenstra, M. Veltkamp, J. Van Kuik et al., “HLA class 1 expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas,” Tissue Antigens, vol. 54, no. 3, pp. 235–245, 1999.
[90]  M. F. Arlt, S. G. Durkin, R. L. Ragland, and T. W. Glover, “Common fragile sites as targets for chromosome rearrangements,” DNA Repair, vol. 5, no. 9-10, pp. 1126–1135, 2006.
[91]  K. Mizuno, I. Miyabe, S. Schalbetter, A. M. Carr, and J. M. Murray, “Recombination-restarted replication makes inverted chromosome fusions at inverted repeats,” Nature, vol. 493, no. 7431, pp. 246–249, 2013.
[92]  M. R. Lieber, “NHEJ and its backup pathways in chromosomal translocations,” Nature Structural and Molecular Biology, vol. 17, no. 4, pp. 393–395, 2010.
[93]  D. O. Ferguson and F. W. Alt, “DNA double strand break repair and chromosomal translocation: lessons from animal models,” Oncogene, vol. 20, no. 40, pp. 5572–5579, 2001.
[94]  C. Scully, J. K. Field, and H. Tanzawa, “Genetic aberrations in oral or head and neck squamous cell carcinoma. 2: chromosomal aberrations,” Oral Oncology, vol. 36, no. 4, pp. 311–327, 2000.
[95]  H. S. Patmore, L. Cawkwell, N. D. Stafford, and J. Greenman, “Unraveling the chromosomal aberrations of head and neck squamous cell carcinoma: a review,” Annals of Surgical Oncology, vol. 12, no. 10, pp. 831–842, 2005.
[96]  T. Lindahl and D. E. Barnes, “Repair of endogenous DNA damage,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 65, pp. 127–133, 2000.
[97]  M. M. Vilenchik and A. G. Knudson, “Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12871–12876, 2003.
[98]  T. Rich, R. L. Allen, and A. H. Wyllie, “Defying death after DNA damage,” Nature, vol. 407, no. 6805, pp. 777–783, 2000.
[99]  D.-T. Bau, C.-H. Chang, M.-H. Tsai et al., “Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility,” Laryngoscope, vol. 120, no. 12, pp. 2417–2422, 2010.
[100]  L. Ai, Q. N. Vo, C. Zuo et al., “Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 1, pp. 150–156, 2004.
[101]  M. A. Rigi-Ladiz, D. M. Kordi-Tamandani, and A. Torkamanzehi, “Analysis of hypermethylation and expression profiles of APC and ATM genes in patients with oral squamous cell carcinoma,” Clinical Epigenetics, vol. 3, no. 1, article 6, 2011.
[102]  S. Spyridonidou, C. Yapijakis, E. Nkenke et al., “A common 9 bp deletion in the ataxia-telangiectasia-mutated gene is not associated with oral cancer,” Anticancer Research, vol. 29, no. 8, pp. 3191–3193, 2009.
[103]  H. T. Lynch and T. Smyrk, “Hereditary nonpolyposis colorectal (Lynch syndrome): an updated review,” Cancer, vol. 78, no. 6, pp. 1149–1167, 1996.
[104]  Y. Wang, J. Irish, C. MacMillan et al., “High frequency of microsatellite instability in young patients with head-and-neck squamous-cell carcinoma: lack of involvement of the mismatch repair genes hMLH1 and hMSH2,” International Journal of Cancer, vol. 93, no. 3, pp. 353–360, 2001.
[105]  S. Piccinin, D. Gasparotto, T. Vukosavljevic et al., “Microsatellite instability in squamous cell carcinomas of the head and neck related to field cancerization phenomena,” British Journal of Cancer, vol. 78, no. 9, pp. 1147–1151, 1998.
[106]  H. Blons, A. Cabelguenne, F. Carnot, et al., “Microsatellite analysis and response to chemotherapy in head-and-neck squamous-cell carcinoma,” International Journal of Cancer, vol. 84, no. 4, pp. 410–415, 1999.
[107]  I. I. Arzimanoglou, F. Gilbert, and H. R. K. Barber, “Microsatellite instability in human solid tumors,” Cancer, vol. 82, no. 10, pp. 1808–1820, 1998.
[108]  A. K. El-Naggar, K. Hurr, V. Huff, G. L. Clayman, M. A. Luna, and J. G. Batsakis, “Microsatellite instability in preinvasive and invasive head and neck squamous carcinoma,” The American Journal of Pathology, vol. 148, no. 6, pp. 2067–2072, 1996.
[109]  C. S. Ishwad, R. E. Ferrell, K. M. Rossie et al., “Microsatellite instability in oral cancer,” International Journal of Cancer, vol. 64, no. 5, pp. 332–335, 1995.
[110]  P. K. Ha, T. A. Pilkington, W. H. Westra, J. Sciubba, D. Sidransky, and J. A. Califano, “Progression of microsatellite instability from premalignant lesions to tumors of the head and neck,” International Journal of Cancer, vol. 102, no. 6, pp. 615–617, 2002.
[111]  C. Zuo, H. Zhang, H. J. Spencer et al., “Increased microsatellite instability and epigenetic inactivation of the hMLH1 gene in head and neck squamous cell carcinoma,” Otolaryngology—Head and Neck Surgery, vol. 141, no. 4, pp. 484–490, 2009.
[112]  I. González-Ramírez, V. Ramírez-Amador, M. E. Irigoyen-Camacho, et al., “hMLH1 promoter methylation is an early event in oral cancer,” Oral Oncology, vol. 47, no. 1, pp. 22–26, 2011.
[113]  M. Viswanathan, N. Tsuchida, and G. Shanmugam, “Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma,” International Journal of Cancer, vol. 105, no. 1, pp. 41–46, 2003.
[114]  R. Czerninski, S. Krichevsky, Y. Ashhab, D. Gazit, V. Patel, and D. Ben-Yehuda, “Promoter hypermethylation of mismatch repair genes, hMLH1 and hMSH2 in oral squamous cell carcinoma,” Oral Diseases, vol. 15, no. 3, pp. 206–213, 2009.
[115]  K. Steinmann, A. Sandner, U. Schagdarsurengin, R. H. Dammann, and R. H. Dammann, “Frequent promoter hypermethylation of tumor-related genes in head and neck squamous cell carcinoma,” Oncology Reports, vol. 22, no. 6, pp. 1519–1526, 2009.
[116]  S. Theocharis, J. Klijanienko, C. Giaginis et al., “Expression of DNA repair proteins, MSH2, MLH1 and MGMT in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients' survival,” Journal of Oral Pathology and Medicine, vol. 40, no. 3, pp. 218–226, 2011.
[117]  H. Dou, S. Mitra, and T. K. Hazra, “Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 49679–49684, 2003.
[118]  A. Kumar, M. C. Pant, H. S. Singh, and S. Khandelwal, “Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India,” Tumor Biology, vol. 33, no. 1, pp. 111–119, 2012.
[119]  T. Paz-Elizur, R. Ben-Yosef, D. Elinger et al., “Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer,” Cancer Research, vol. 66, no. 24, pp. 11683–11689, 2006.
[120]  I. Mahjabeen, R. M. Baig, M. Sabir, and M. A. Kayani, “Genetic and expressional variations of APEX1 are associated with increased risk of head and neck cancer,” Mutagenesis, vol. 28, no. 2, pp. 213–218, 2013.
[121]  A. Das, L. Wiederhold, J. B. Leppard et al., “NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells,” DNA Repair, vol. 5, no. 12, pp. 1439–1448, 2006.
[122]  X. Zhai, H. Zhao, Z. Liu et al., “Functional variants of the NEIL1 and NEIL2 genes and risk and progression of squamous cell carcinoma of the oral cavity and oropharynx,” Clinical Cancer Research, vol. 14, no. 13, pp. 4345–4352, 2008.
[123]  K. W. Caldecott, “XRCC1 and DNA strand break repair,” DNA Repair, vol. 2, no. 9, pp. 955–969, 2003.
[124]  E. J. Dunphy, M. A. Beckett, L. H. Thompson, and R. R. Weichselbaum, “Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines,” Radiation Research, vol. 130, no. 2, pp. 166–170, 1992.
[125]  P. Nix, J. Greenman, N. Stafford, and L. Cawkwell, “Expression of XRCC1 and ERCC1 proteins in radioresistant and radiosensitive laryngeal cancer,” Cancer Therapy, vol. 2, pp. 47–53, 2004.
[126]  M.-K. Ang, M. R. Patel, X.-Y. Yin et al., “High XRCC1 protein expression is associated with poorer survival in patients with head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 17, no. 20, pp. 6542–6552, 2011.
[127]  F. G. Sousa, R. Matuo, D. Soares et al., “PARPs and the DNA damage response,” Carcinogenesis, vol. 33, no. 8, pp. 1433–1440, 2012.
[128]  K. Sugimura, S.-I. Takebayashi, H. Taguchi, S. Takeda, and K. Okumura, “PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA,” Journal of Cell Biology, vol. 183, no. 7, pp. 1203–1212, 2008.
[129]  N. Schultz, E. Lopez, N. Saleh-Gohari, and T. Helleday, “Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination,” Nucleic Acids Research, vol. 31, no. 17, pp. 4959–4964, 2003.
[130]  M. de Vos, V. Schreiber, and F. Dantzer, “The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art,” Biochemical Pharmacology, vol. 84, no. 2, pp. 137–146, 2012.
[131]  V. Schreiber, J.-C. Amé, P. Dollé et al., “Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 23028–23036, 2002.
[132]  H. E. Bryant, N. Schultz, H. D. Thomas et al., “Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase,” Nature, vol. 434, no. 7035, pp. 913–917, 2005.
[133]  P. C. Fong, D. S. Boss, T. A. Yap, et al., “Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers,” The New England Journal of Medicine, vol. 361, no. 2, pp. 123–134, 2009.
[134]  S. Nowsheen, J. A. Bonner, A. F. LoBuglio et al., “Cetuximab augments cytotoxicity with poly (ADP-Ribose) polymerase inhibition in head and neck cancer,” PLoS ONE, vol. 6, no. 8, Article ID e24148, 2011.
[135]  W. M. Abuzeid, K. Khan, X. Jiang, X. Cao, B. W. O'Malley Jr., and D. Li, “R013: disruption of DNA damage signaling: a novel therapy for HNSCC,” Otolaryngology—Head and Neck Surgery, vol. 137, no. 2, supplement, pp. P152–P153, 2007.
[136]  T. Tanaka, A. Munshi, C. Brooks, J. Liu, M. L. Hobbs, and R. E. Meyn, “Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity,” Clinical Cancer Research, vol. 14, no. 4, pp. 1266–1273, 2008.
[137]  N. McCabe, N. C. Turner, C. J. Lord et al., “Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition,” Cancer Research, vol. 66, no. 16, pp. 8109–8115, 2006.
[138]  Y. H. Ibrahim, C. García-García, V. Serra, et al., “PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition,” Cancer Discovery, vol. 2, no. 11, pp. 1036–1047, 2012.
[139]  T. Yamashita, S. Miyamoto, B. O'Malley, and D. Li, “The role of PARP 1 for cisplatin-based chemoresistance,” Otolaryngology—Head and Neck Surgery, vol. 143, no. 2, supplement, p. P54, 2010.
[140]  L.-E. Wang, E. M. Sturgis, S. A. Eicher, M. R. Spitz, W. K. Hong, and Q. Wei, “Mutagen sensitivity to Benzo(a)pyrene diol epoxide and the risk of squamous cell carcinoma of the head and neck,” Clinical Cancer Research, vol. 4, no. 7, pp. 1773–1778, 1998.
[141]  M. Robu, R. G. Shah, N. Petitclerc, J. Brind'Amour, F. Kandan-Kulangara, and G. M. Shah, “Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 5, pp. 1658–1663, 2013.
[142]  S. C. Shuck, E. A. Short, and J. J. Turchi, “Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology,” Cell Research, vol. 18, no. 1, pp. 64–72, 2008.
[143]  J. E. Cleaver, “Photosensitivity syndrome brings to light a new transcription-coupled DNA repair cofactor,” Nature Genetics, vol. 44, no. 5, pp. 477–478, 2012.
[144]  L. Wei, L. Lan, A. Yasui et al., “BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein,” Cancer Science, vol. 102, no. 10, pp. 1840–1847, 2011.
[145]  Y. Kamenisch and M. Berneburg, “Progeroid syndromes and UV-induced oxidative DNA damage,” Journal of Investigative Dermatology Symposium Proceedings, vol. 14, no. 1, pp. 8–14, 2009.
[146]  S. W. P. Wijnhoven, H. J. M. Kool, C. T. M. Van Oostrom et al., “The relationship between benzo[a]pyrene-induce mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice,” Cancer Research, vol. 60, no. 20, pp. 5681–5687, 2000.
[147]  T.-J. Chiu, C.-H. Chen, C.-Y. Chien, S.-H. Li, H.-T. Tsai, and Y.-J. Chen, “High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area,” Journal of Translational Medicine, vol. 9, article 31, 2011.
[148]  A. Handra-Luca, J. Hernandez, G. Mountzios et al., “Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 13, no. 13, pp. 3855–3859, 2007.
[149]  H. J. Jun, M. J. Ahn, H. S. Kim et al., “ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation,” British Journal of Cancer, vol. 99, no. 1, pp. 167–172, 2008.
[150]  L. L. Tsai, C. Yu, J.-F. Lo, et al., “Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1,” Journal of Dental Sciences, vol. 7, no. 2, pp. 111–117, 2012.
[151]  A. Ahmad, A. R. Robinson, A. Duensing et al., “ERCC1-XPF endonuclease facilitates DNA double-strand break repair,” Molecular and Cellular Biology, vol. 28, no. 16, pp. 5082–5092, 2008.
[152]  B. K?berle, C. Ditz, I. Kausch, B. Wollenberg, R. L. Ferris, and A. E. Albers, “Metastases of squamous cell carcinoma of the head and neck show increased levels of nucleotide excision repair protein XPF in vivo that correlate with increased chemoresistance ex vivo,” International Journal of Oncology, vol. 36, no. 5, pp. 1277–1284, 2010.
[153]  Y. Wang, M. R. Spitz, J. J. Lee, M. Huang, S. M. Lippman, and X. Wu, “Nucleotide excision repair pathway genes and oral premalignant lesions,” Clinical Cancer Research, vol. 13, no. 12, pp. 3753–3758, 2007.
[154]  L. Cheng, E. M. Sturgis, S. A. Eicher, M. R. Spitz, and Q. Wei, “Expression of nucleotide excision repair genes and dhe risk for squamous cell carcinoma of the head and neck,” Cancer, vol. 94, no. 2, pp. 393–397, 2002.
[155]  H. Yu, Z. Liu, Y. J. Huang, M. Yin, L. E. Wang, and Q. Wei, “Association between single nucleotide polymorphisms in ERCC4 and risk of squamous cell carcinoma of the head and neck,” PLoS ONE, vol. 7, no. 7, Article ID e41853, 2012.
[156]  T. Sliwinski, L. Markiewicz, P. Rusin et al., “Impaired nucleotide excision repair pathway as a possible factor in pathogenesis of head and neck cancer,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 716, no. 1-2, pp. 51–58, 2011.
[157]  M. E. Zafereo, E. Sturgis, Q. Wei, G. Li, Z. Liu, and L. Wang, “Nucleotide excision repair and risk of second primary cancer,” Otolaryngology—Head and Neck Surgery, vol. 141, no. 3, supplement 1, pp. P55–P56, 2009.
[158]  S. A. Roberts, N. Strande, M. D. Burkhalter et al., “Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends,” Nature, vol. 464, no. 7292, pp. 1214–1217, 2010.
[159]  S. M. Indiviglio and A. A. Bertuch, “Ku's essential role in keeping telomeres intact,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 30, pp. 12217–12218, 2009.
[160]  B. J. Moeller, J. S. Yordy, M. D. Williams et al., “DNA repair biomarker profiling of head and neck cancer: Ku80 expression predicts locoregional failure and death following radiotherapy,” Clinical Cancer Research, vol. 17, no. 7, pp. 2035–2043, 2011.
[161]  M. A. Pavón, M. Parre?o, X. León et al., “Ku70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer,” International Journal of Cancer, vol. 123, no. 5, pp. 1068–1079, 2008.
[162]  S. Friesland, L. Kanter-Lewensohn, R. Tell, E. Munck-Wikland, R. Lewensohn, and A. Nilsson, “Expression of Ku86 confers favorable outcome of tonsillar carcinoma treated with radiotherapy,” Head and Neck, vol. 25, no. 4, pp. 313–321, 2003.
[163]  E. Sonoda, H. Hochegger, A. Saberi, Y. Taniguchi, and S. Takeda, “Differential usage of non-homologous end-joining and homologous recombination in double strand break repair,” DNA Repair, vol. 5, no. 9-10, pp. 1021–1029, 2006.
[164]  A. D. D'Andrea and M. Grompe, “The fanconi anaemia/BRCA pathway,” Nature Reviews Cancer, vol. 3, no. 1, pp. 23–34, 2003.
[165]  P. S. Rosenberg, M. H. Greene, and B. P. Alter, “Cancer incidence in persons with Fanconi anemia,” Blood, vol. 101, no. 3, pp. 822–826, 2003.
[166]  V. B. Wreesmann, C. Estilo, D. W. Eisele, B. Singh, and S. J. Wang, “Downregulation of Fanconi anemia genes in sporadic head and neck squamous cell carcinoma,” Journal for Oto-Rhino-Laryngology and Its Related Specialties, vol. 69, no. 4, pp. 218–225, 2007.
[167]  S. Tremblay, P. P. dos Reis, G. Bradley et al., “Young patients with oral squamous cell carcinoma: study of the involvement of GSTP1 and deregulation of the Fanconi anemia genes,” Archives of Otolaryngology—Head and Neck Surgery, vol. 132, no. 9, pp. 958–966, 2006.
[168]  L. E. Hays, D. M. Zodrow, J. E. Yates et al., “Cigarette smoke induces genetic instability in airway epithelial cells by suppressing FANCD2 expression,” British Journal of Cancer, vol. 98, no. 10, pp. 1653–1661, 2008.
[169]  C. J. Marsit, M. Liu, H. H. Nelson, M. Posner, M. Suzuki, and K. T. Kelsey, “Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival,” Oncogene, vol. 23, no. 4, pp. 1000–1004, 2004.
[170]  A. Ghosh, S. Ghosh, G. P. Maiti et al., “Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck,” Annals of Surgical Oncology, vol. 19, supplement 3, pp. S528–S538, 2012.
[171]  I. M. Smith, S. K. Mithani, W. K. Mydlarz, S. S. Chang, and J. A. Califano, “Inactivation of the tumor suppressor genes causing the hereditary syndromes predisposing to head and neck cancer via promoter hypermethylation in sporadic head and neck cancers,” Journal for Oto-Rhino-Laryngology and Its Related Specialties, vol. 72, no. 1, pp. 44–50, 2010.
[172]  E. R. Snyder, J. L. Ricker, Z. Chen, and C. V. Waes, “Variation in cisplatinum sensitivity is not associated with Fanconi Anemia/BRCA pathway inactivation in head and neck squamous cell carcinoma cell lines,” Cancer Letters, vol. 245, no. 1-2, pp. 75–80, 2007.
[173]  K. C. Manthey, J. G. Glanzer, D. D. Dimitrova, and G. G. Oakley, “Hyperphosphorylation of replication protein A in cisplatin-resistant and -sensitive head and neck squamous cell carcinoma cell lines,” Head and Neck, vol. 32, no. 5, pp. 636–645, 2010.
[174]  D. Thompson, D. F. Easton, and The Breast Cancer Linkage Consortium, “Cancer incidence in BRCA1 mutation carriers,” Journal of the National Cancer Institute, vol. 94, no. 18, pp. 1358–1365, 2002.
[175]  D. Ford, D. F. Easton, D. T. Bishop, S. A. Narod, and D. E. Goldgar, “Risks of cancer in BRCA1-mutation carriers,” The Lancet, vol. 343, no. 8899, pp. 692–695, 1994.
[176]  M. Taron, R. Rosell, E. Felip et al., “BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer,” Human Molecular Genetics, vol. 13, no. 20, pp. 2443–2449, 2004.
[177]  L. A. Tobin, C. Robert, P. Nagaria et al., “Targeting abnormal DNA repair in therapy-resistant breast cancers,” Molecular Cancer Research, vol. 10, no. 1, pp. 96–107, 2012.
[178]  H. H. Vora, N. G. Shah, D. D. Patel, T. I. Trivedi, and T. J. Choksi, “BRCA1 expression in leukoplakia and carcinoma of the tongue,” Journal of Surgical Oncology, vol. 83, no. 4, pp. 232–240, 2003.
[179]  H. M. Nawroz-Danish, W. M. Koch, W. H. Westra, G. Yoo, and D. Sidransky, “Lack of BRCA2 alterations in primary head and neck squamous cell carcinoma,” Otolaryngology—Head and Neck Surgery, vol. 119, no. 1, pp. 21–25, 1998.
[180]  W. Kolch, “Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions,” Biochemical Journal, vol. 351, no. 2, pp. 289–305, 2000.
[181]  C. J. Marshall, “Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation,” Cell, vol. 80, no. 2, pp. 179–185, 1995.
[182]  V. W. Lui, M. L. Hedberg, H. Li, et al., “Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers,” Cancer Discovery, vol. 3, no. 7, pp. 761–769, 2013.
[183]  M. Toulany, U. Kasten-Pisula, I. Brammer et al., “Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair,” Clinical Cancer Research, vol. 12, no. 13, pp. 4119–4126, 2006.
[184]  S.-M. Huang, J. M. Bock, and P. M. Harari, “Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck,” Cancer Research, vol. 59, no. 8, pp. 1935–1940, 1999.
[185]  A. Kumar, O. Fernadez-Capetillo, and A. C. Carrera, “Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7491–7496, 2010.
[186]  G. D. Kao, Z. Jiang, A. M. Fernandes, A. K. Gupta, and A. Maity, “Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation,” Journal of Biological Chemistry, vol. 282, no. 29, pp. 21206–21212, 2007.
[187]  M. Toulany, R. Kehlbach, U. Florczak et al., “Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 1772–1781, 2008.
[188]  I. Plo, C. Laulier, L. Gauthier, F. Lebrun, F. Calvo, and B. S. Lopez, “AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD5,” Cancer Research, vol. 68, no. 22, pp. 9404–9412, 2008.
[189]  L. Li, H. Wang, E. S. Yang, C. L. Arteaga, and F. Xia, “Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells,” Cancer Research, vol. 68, no. 22, pp. 9141–9146, 2008.
[190]  P. Chinnaiyan, S. Huang, G. Vallabhaneni et al., “Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva),” Cancer Research, vol. 65, no. 8, pp. 3328–3335, 2005.
[191]  J. A. Engelman and P. A. J?nne, “Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer,” Clinical Cancer Research, vol. 14, no. 10, pp. 2895–2899, 2008.
[192]  T. J. Lynch, D. W. Bell, R. Sordella et al., “Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib,” The New England Journal of Medicine, vol. 350, no. 21, pp. 2129–2139, 2004.
[193]  J. Loeffler-Ragg, M. Witsch-Baumgartner, A. Tzankov et al., “Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma,” European Journal of Cancer, vol. 42, no. 1, pp. 109–111, 2006.
[194]  J. W. Lee, Y. H. Soung, S. Y. Kim, et al., “Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck,” Clinical Cancer Research, vol. 11, no. 8, pp. 2879–2882, 2005.
[195]  I. Schwentner, M. Witsch-Baumgartner, G. M. Sprinzl et al., “Identification of the rare EGFR mutation p.G796S as somatic and germline mutation in white patients with squamous cell carcinoma of the head and neck,” Head and Neck, vol. 30, no. 8, pp. 1040–1044, 2008.
[196]  I. I. Na, H. J. Kang, S. Y. Cho et al., “EGFR mutations and human papillomavirus in squamous cell carcinoma of tongue and tonsil,” European Journal of Cancer, vol. 43, no. 3, pp. 520–526, 2007.
[197]  M. A. L. S. Ali, M. Gunduz, H. Nagatsuka et al., “Expression and mutation analysis of epidermal growth factor receptor in head and neck squamous cell carcinoma,” Cancer Science, vol. 99, no. 8, pp. 1589–1594, 2008.
[198]  J. C. Sok, F. M. Coppelli, S. M. Thomas et al., “Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting,” Clinical Cancer Research, vol. 12, no. 17, pp. 5064–5073, 2006.
[199]  H. K. Gan, A. H. Kaye, and R. B. Luwor, “The EGFRvIII variant in glioblastoma multiforme,” Journal of Clinical Neuroscience, vol. 16, no. 6, pp. 748–754, 2009.
[200]  S. E. Wheeler, S. Suzuki, S. M. Thomas et al., “Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation,” Oncogene, vol. 29, no. 37, pp. 5135–5145, 2010.
[201]  S. K. Batra, S. Castelino-Prabhu, C. J. Wikstrand et al., “Epidermal growth factor ligand-independent, unregulated, cell- transforming potential of a naturally occurring human mutant EGFRvIII gene,” Cell Growth and Differentiation, vol. 6, no. 10, pp. 1251–1259, 1995.
[202]  A. K. Murugan, N. Thi Hong, Y. Fukui, A. K. Munirajan, and N. Tsuchida, “Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas,” International Journal of Oncology, vol. 32, no. 1, pp. 101–111, 2008.
[203]  W. Qiu, F. Sch?nleben, X. Li et al., “PIK3CA mutations in head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 12, no. 5, pp. 1441–1446, 2006.
[204]  I. Fenic, K. Steger, C. Gruber, C. Arens, and J. Woenckhaus, “Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma,” Oncology Reports, vol. 18, no. 1, pp. 253–259, 2007.
[205]  Y. Cohen, N. Goldenberg-Cohen, B. Shalmon et al., “Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma,” Oral Oncology, vol. 47, no. 10, pp. 946–950, 2011.
[206]  W. M. Ongkeko, X. Altuna, R. A. Weisman, and J. Wang-Rodriguez, “Expression of protein tyrosine kinases in head and neck squamous cell carcinomas,” American Journal of Clinical Pathology, vol. 124, no. 1, pp. 71–76, 2005.
[207]  J. R. Grandis, M. F. Melhem, W. E. Gooding et al., “Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival,” Journal of the National Cancer Institute, vol. 90, no. 11, pp. 824–832, 1998.
[208]  K. K. Ang, B. A. Berkey, X. Tu et al., “Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma,” Cancer Research, vol. 62, no. 24, pp. 7350–7356, 2002.
[209]  S.-F. Huang, W.-Y. Chuang, I.-H. Chen, C.-T. Liao, H.-M. Wang, and L.-L. Hsieh, “EGFR protein overexpression and mutation in areca quid-associated oral cavity squamous cell carcinoma in Taiwan,” Head and Neck, vol. 31, no. 8, pp. 1068–1077, 2009.
[210]  E. L. Abhold, A. Kiang, E. Rahimy et al., “EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells,” PLoS ONE, vol. 7, no. 2, Article ID e32459, 2012.
[211]  S. Temam, H. Kawaguchi, A. K. El-Naggar et al., “Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer,” Journal of Clinical Oncology, vol. 25, no. 16, pp. 2164–2170, 2007.
[212]  L. E. Morrison, K. K. Jacobson, M. Friedman, J. W. Schroeder, and J. S. Coon, “Aberrant EGFR and chromosome 7 associate with outcome in laryngeal cancer,” Laryngoscope, vol. 115, no. 7, pp. 1212–1218, 2005.
[213]  J. A. Bonner, P. M. Harari, J. Giralt et al., “Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck,” The New England Journal of Medicine, vol. 354, no. 6, pp. 567–578, 2006.
[214]  National Comprehensive Cancer Network. Head and Neck Cancers, 2012, http://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf.
[215]  J.-C. Ko, S.-C. Ciou, C.-M. Cheng et al., “Involvement of Rad51 in cytotoxicity induced by epidermal growth factor receptor inhibitor (gefitinib, Iressa R) and chemotherapeutic agents in human lung cancer cells,” Carcinogenesis, vol. 29, no. 7, pp. 1448–1458, 2008.
[216]  J. S. Stewart, E. E. Cohen, L. Licitra, et al., “Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck,” Journal of Clinical Oncology, vol. 27, no. 11, pp. 1864–1871, 2009.
[217]  S. M. Bentzen, B. M. Atasoy, F. M. Daley et al., “Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial,” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5560–5567, 2005.
[218]  D. J. Chen and C. S. Nirodi, “The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage,” Clinical Cancer Research, vol. 13, no. 22, pp. 6555–6560, 2007.
[219]  C. Li, M. Iida, E. F. Dunn, A. J. Ghia, and D. L. Wheeler, “Nuclear EGFR contributes to acquired resistance to cetuximab,” Oncogene, vol. 28, no. 43, pp. 3801–3813, 2009.
[220]  D. L. Wheeler, S. Huang, T. J. Kruser et al., “Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members,” Oncogene, vol. 27, no. 28, pp. 3944–3956, 2008.
[221]  S. Misale, R. Yaeger, S. Hobor, et al., “Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer,” Nature, vol. 486, no. 7404, pp. 532–536, 2012.
[222]  K. A. Frazer, D. G. Ballinger, D. R. Cox, et al., “A second generation human haplotype map of over 3.1 million SNPs,” Nature, vol. 449, no. 7164, pp. 851–861, 2007.
[223]  I. Mahjabeen, R. M. Baig, N. Masood, M. Sabir, F. A. Malik, and M. A. Kayani, “OGG1 gene sequence variation in head and neck cancer patients in pakistan,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 10, pp. 2779–2783, 2011.
[224]  T. Hashimoto, K. Uchida, N. Okayama et al., “Interaction of OGG1 Ser326Cys polymorphism with cigarette smoking in head and neck squamous cell carcinoma,” Molecular Carcinogenesis, vol. 45, no. 5, pp. 344–348, 2006.
[225]  M. Majumder, D. Indra, P. D. Roy et al., “Variant haplotypes at XRCC1 and risk of oral leukoplakia in HPV non-infected samples,” Journal of Oral Pathology and Medicine, vol. 38, no. 2, pp. 174–180, 2009.
[226]  K. M. Applebaum, M. D. McClean, H. H. Nelson, C. J. Marsit, B. C. Christensen, and K. T. Kelsey, “Smoking modifies the relationship between XRCC1 haplotypes and HPV16-negative head and neck squamous cell carcinoma,” International Journal of Cancer, vol. 124, no. 11, pp. 2690–2696, 2009.
[227]  J. Huang, F. Ye, H. Chen, W. Lu, and X. Xie, “The nonsynonymous single nucleotide polymorphisms of DNA repair gene XRCC1 and susceptibility to the development of cervical carcinoma and high-risk human papillomavirus infection,” International Journal of Gynecological Cancer, vol. 17, no. 3, pp. 668–675, 2007.
[228]  A. Kumar, M. C. Pant, H. S. Singh, and S. Khandelwal, “Associated risk of XRCC1 and XPD cross talk and life style factors in progression of head and neck cancer in north Indian population,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 729, no. 1-2, pp. 24–34, 2012.
[229]  J. Carles, M. Monzo, M. Amat et al., “Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer,” International Journal of Radiation Oncology, Biology, Physics, vol. 66, no. 4, pp. 1022–1030, 2006.
[230]  G. De Castro Jr., F. S. Pasini, S. A. C. Siqueira et al., “ERCC1 protein, mRNA expression and T19007C polymorphism as prognostic markers in head and neck squamous cell carcinoma patients treated with surgery and adjuvant cisplatin-based chemoradiation,” Oncology Reports, vol. 25, no. 3, pp. 693–699, 2011.
[231]  M. Swift, D. Morrell, R. B. Massey, and C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” The New England Journal of Medicine, vol. 325, no. 26, pp. 1831–1836, 1991.
[232]  P. Sung and H. Klein, “Mechanism of homologous recombination: mediators and helicases take on regulatory functions,” Nature Reviews Molecular Cell Biology, vol. 7, no. 10, pp. 739–750, 2006.
[233]  D. J. Richard, E. Bolderson, L. Cubeddu et al., “Single-stranded DNA-binding protein hSSB1 is critical for genomic stability,” Nature, vol. 453, no. 7195, pp. 677–681, 2008.
[234]  D. J. Richard, K. Savage, E. Bolderson et al., “HSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex,” Nucleic Acids Research, vol. 39, no. 5, pp. 1692–1702, 2011.
[235]  S. Nakada, R. M. Yonamine, and K. Matsuo, “RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1,” Cancer Research, vol. 72, no. 19, pp. 4974–4983, 2012.
[236]  E. Bolderson, N. Tomimatsu, D. J. Richard et al., “Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks,” Nucleic Acids Research, vol. 38, no. 6, pp. 1821–1831, 2010.
[237]  D. J. Richard, L. Cubeddu, A. J. Urquhart et al., “hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity,” Nucleic Acids Research, vol. 39, no. 9, pp. 3643–3651, 2011.
[238]  W. Y. Mansour, T. Rhein, and J. Dahm-Daphi, “The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies,” Nucleic Acids Research, vol. 38, no. 18, pp. 6065–6077, 2010.
[239]  K. Shinmura, H. Tao, M. Goto et al., “Inactivating mutations of the human base excision repair gene NEIL1 in gastric cancer,” Carcinogenesis, vol. 25, no. 12, pp. 2311–2317, 2004.
[240]  T. Sliwinski, A. Walczak, K. Przybylowska, et al., “Polymorphisms of the XRCC3 C722T and the RAD51 G135C genes and the risk of head and neck cancer in a Polish population,” Experimental and Molecular Pathology, vol. 89, no. 3, pp. 358–366, 2010.
[241]  H. Romanowicz-Makowska, B. Smolarz, M. Gaj?cka, et al., “Polymorphism of the DNA repair genes RAD51 and XRCC2 in smoking-and drinking-related laryngeal cancer in a Polish population,” Archives of Medical Science, vol. 8, no. 6, pp. 1065–1075, 2012.
[242]  J. Werbrouck, K. De Ruyck, F. Duprez et al., “Single-nucleotide polymorphisms in DNA double-strand break repair genes: association with head and neck cancer and interaction with tobacco use and alcohol consumption,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, vol. 656, no. 1-2, pp. 74–81, 2008.
[243]  Y. Cui, H. Morgenstern, S. Greenland et al., “Polymorphism of xeroderma pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus,” International Journal of Cancer, vol. 118, no. 3, pp. 714–720, 2006.
[244]  M. B. dos Reis, R. Losi-Guembarovski, E. M. de Souza Fonseca Ribeiro, et al., “Allelic variants of XRCC1 and XRCC3 repair genes and susceptibility of oral cancer in Brazilian patients,” Journal of Oral Pathology & Medicine, vol. 42, no. 2, pp. 180–185, 2013.
[245]  E. Pawlowska, K. Janik-Papis, M. Rydzanicz et al., “The Cys326 allele of the 8-oxoguanine DNA N-glycosylase 1 gene as a risk factor in smoking- and drinking-associated larynx cancer,” Tohoku Journal of Experimental Medicine, vol. 219, no. 4, pp. 269–275, 2009.
[246]  S. Kietthubthew, H. Sriplung, W. W. Au, and T. Ishida, “Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand,” International Journal of Hygiene and Environmental Health, vol. 209, no. 1, pp. 21–29, 2006.
[247]  P. Gresner, J. Gromadzinska, K. Polanska, E. Twardowska, J. Jurewicz, and W. Wasowicz, “Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer,” Gene, vol. 504, no. 2, pp. 166–174, 2012.
[248]  Z. Zhang, Q. Shi, L.-E. Wang et al., “No association between hOGG1 Ser326Cys polymorphism and risk of squamous cell carcinoma of the head and neck,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 6, pp. 1081–1083, 2004.
[249]  A. Elahi, Z. Zheng, J. Park, K. Eyring, T. McCaffrey, and P. Lazarus, “The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk,” Carcinogenesis, vol. 23, no. 7, pp. 1229–1234, 2002.
[250]  S. Ramachandran, K. Ramadas, R. Hariharan, R. Rejnish Kumar, and M. Radhakrishna Pillai, “Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer,” Oral Oncology, vol. 42, no. 4, pp. 350–362, 2006.
[251]  K. Tae, H. S. Lee, B. J. Park et al., “Association of DNA repair gene XRCC1 polymorphisms with head and neck cancer in Korean population,” International Journal of Cancer, vol. 111, no. 5, pp. 805–808, 2004.
[252]  M. Kowalski, K. Przybylowska, P. Rusin et al., “Genetic polymorphisms in DNA base excision repair gene XRCC1 and the risk of squamous cell carcinoma of the head and neck,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article 37, 2009.
[253]  C.-Y. Yen, S.-Y. Liu, C.-H. Chen et al., “Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan,” Journal of Oral Pathology and Medicine, vol. 37, no. 5, pp. 271–277, 2008.
[254]  H.-C. Tseng, M.-H. Tsai, C.-F. Chiu et al., “Association of XRCC4 codon 247 polymorphism with oral cancer susceptibility in Taiwan,” Anticancer Research, vol. 28, no. 3A, pp. 1687–1691, 2008.
[255]  C.-F. Chiu, M.-H. Tsai, H.-C. Tseng et al., “A novel single nucleotide polymorphism in XRCC4 gene is associated with oral cancer susceptibility in Taiwanese patients,” Oral Oncology, vol. 44, no. 9, pp. 898–902, 2008.
[256]  C.-F. Chiu, M.-H. Tsai, H.-C. Tseng et al., “A novel single nucleotide polymorphism in ERCC6 gene is associated with oral cancer susceptibility in Taiwanese patients,” Oral Oncology, vol. 44, no. 6, pp. 582–586, 2008.
[257]  C.-F. Hsu, H.-C. Tseng, C.-F. Chiu et al., “Association between DNA double strand break gene Ku80 polymorphisms and oral cancer susceptibility,” Oral Oncology, vol. 45, no. 9, pp. 789–793, 2009.
[258]  D.-T. Bau, H.-C. Tseng, C.-H. Wang et al., “Oral cancer and genetic polymorphism of DNA double strand break gene Ku70 in Taiwan,” Oral Oncology, vol. 44, no. 11, pp. 1047–1051, 2008.
[259]  R. E. Flores-Obando, S. M. Gollin, and C. C. Ragin, “Polymorphisms in DNA damage response genes and head and neck cancer risk,” Biomarkers, vol. 15, no. 5, pp. 379–399, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413