全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

DOI: 10.1155/2013/257218

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches. 1. Background The subgenus Potatoe of the Solanaceae family includes approximately 188 tuber-bearing species [1]. They display large ecological adaptation encompassing several traits that are lacking in the commercial potato and useful for breeding [2]. Among wild potato species, Solanum bulbocastanum Dun. and S. commersonii Dun. ex Poir. have attracted the attention of researchers and breeders. S. bulbocastanum is a known source of resistance to late blight disease of potato, and four late blight resistance genes have been cloned from this species to date [3–7]. S. commersonii ranks first among Solanums in terms of cold tolerance and capacity to cold acclimate, and it is also a source of resistance to pathogens such as Ralstonia solanacearum and Pectobacterium carotovorum [8, 9]. S. bulbocastanum and S. commersonii are among approximately 20 diploid potato species classified as superseries Stellata by Hawkes [10]. Despite their importance as sources of genes for crop improvement, relatively few genetic and genomic resources are available for these species, and little is known on their genome organization, gene function, and regulatory networks. Recently, a Diversity Arrays Technology (DArT) array was constructed for potato [11]. The array contains markers derived from various Solanum species, including S. bulbocastanum and S. commersonii. DArT arrays offer the potential to simultaneously survey large numbers of anonymous loci

References

[1]  D. M. Spooner and A. Salas, “Structure, biosystematics, and genetic resources,” in Handbook of Potato Production, Improvement, and Post-Harvest Management, J. Gopal and S. M. Paul Khurana, Eds., pp. 1–39, Haworth's Press, Binghampton, NY, USA, 2006.
[2]  J. E. Bradshaw, “Potato-breeding strategy,” in Potato Biology and Biotechnology: Advances and Perspectives, D. Vreugdenhil, Ed., pp. 157–177, Elsevier, Oxford, UK, 2007.
[3]  J. Song, J. M. Bradeen, S. K. Naess et al., “Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9128–9133, 2003.
[4]  E. Van Der Vossen, A. Sikkema, B. T. L. Hekkert et al., “An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato,” Plant Journal, vol. 36, no. 6, pp. 867–882, 2003.
[5]  E. A. G. Van Der Vossen, J. Gros, A. Sikkema et al., “The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato,” Plant Journal, vol. 44, no. 2, pp. 208–222, 2005.
[6]  T. H. Park, J. Gros, A. Sikkema et al., “The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato,” Molecular Plant-Microbe Interactions, vol. 18, no. 7, pp. 722–729, 2005.
[7]  T. Oosumi, D. R. Rockhold, M. M. Maccree, K. L. Deahl, K. F. McCue, and W. R. Belknap, “Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes,” American Journal of Potato Research, vol. 86, no. 6, pp. 456–465, 2009.
[8]  D. Carputo, T. Cardi, J. P. Palta, P. Sirianni, S. Vega, and L. Frusciante, “Tolerance to low temperatures and tuber soft rot in hybrids between Solanum commersonii and Solanum tuberosum obtained through manipulation of ploidy and endosperm balance number (EBN),” Plant Breeding, vol. 119, no. 2, pp. 127–130, 2000.
[9]  D. Carputo, R. Aversano, A. Barone et al., “Resistance to ralstonia solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum,” American Journal of Potato Research, vol. 86, no. 3, pp. 196–202, 2009.
[10]  J. G. Hawkes, The Potato: Evolution, Biodiversity and Genetic Resources, Smithsonian Institution Press, Washington, DC, USA, 1990.
[11]  J. Sliwka, H. Jakuczun, M. Chmielarz et al., “A resistance gene against potato late blight originating from Solanum x michoacanum maps to potato chromosome VII,” Theoretical and Applied Genetics, vol. 124, no. 2, pp. 397–406, 2012.
[12]  The Tomato Genome Consortium, “Genome sequence and analysis of the tuber crop potato,” Nature, vol. 475, no. 7355, pp. 189–195, 2011.
[13]  The Tomato Genome Consortium, “The tomato genome sequence provides insights into fleshy fruit evolution,” Nature, vol. 485, pp. 635–641, 2012.
[14]  M. W. Bonierbale, R. L. Plaisted, and S. D. Tanksley, “RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato,” Genetics, vol. 120, no. 4, pp. 1095–1103, 1988.
[15]  S. D. Tanksley, M. W. Ganal, J. P. Prince et al., “High density molecular linkage maps of the tomato and potato genomes,” Genetics, vol. 132, no. 4, pp. 1141–1160, 1992.
[16]  R. C. Grube, E. R. Radwanski, and M. Jahn, “Comparative genetics of disease resistance within the solanaceae,” Genetics, vol. 155, no. 2, pp. 873–887, 2000.
[17]  J. M. Bradeen, “Cloning of late blight resistance genes: strategies and progress,” in Genetics, Genomics and Breeding of Potato, J. M. Bradeen and C. Kole, Eds., pp. 153–183, CRC Press/Science Publishers, Enfield, NH, 2011.
[18]  K. Mochida and K. Shinozaki, “Advances in omics and bioinformatics tools for systems analyses of plant functions,” Plant Cell Physiology, vol. 52, no. 12, pp. 2017–2038, 2011.
[19]  M. L. Chiusano, N. D'Agostino, A. Traini et al., “ISOL" An Italian SOLAnaceae genomics resource,” BMC Bioinformatics, vol. 9, no. 2, article S7, 2008.
[20]  M. J. Sanchez, Allelic mining for late blight resistance in wild Solanum species belonging to series Bulbocastana [M.S. thesis], Department of Plant Pathology, University of Minnesota, St. Paul, Minn, USA, 2005.
[21]  M. Iorizzo, Uso di strumenti genomici per lo studio di linee di patata ottenute tramite ingegneria genetica e genomica [Ph.D. thesis], Department of Soil, Plant and Environmental and Animal Production Science, University of Naples Federico II, 2008.
[22]  J. J. Doyle and J. L. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, vol. 12, pp. 13–15, 1990.
[23]  D. Jaccoud, K. Peng, D. Feinstein, and A. Kilian, “Diversity arrays: a solid state technology for sequence information independent genotyping,” Nucleic Acids Research, vol. 29, no. 4, article E25, 2001.
[24]  L. Mueller, S. Tanksley, J. J. Giovannoni, et al., “A snapshot of the emerging tomato genome sequence,” The Plant Genome, vol. 2, no. 1, pp. 78–92, 2009.
[25]  G. Gremme, V. Brendel, M. E. Sparks, and S. Kurtz, “Engineering a software tool for gene structure prediction in higher organisms,” Information and Software Technology, vol. 47, no. 15, pp. 965–978, 2005.
[26]  X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999.
[27]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[28]  M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, “NCBI BLAST: a better web interface,” Nucleic Acids Research, vol. 36, pp. W5–W9, 2008.
[29]  N. Blüthgen, K. Brand, B. Cajavec, M. Swat, H. Herzel, and D. Beule, “Biological profiling of gene groups utilizing gene ontology,” Genome Informatics, vol. 16, pp. 106–115, 2005.
[30]  A. Conesa, S. G?tz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005.
[31]  P. Wenzl, H. Li, J. Carling et al., “A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits,” BMC Genomics, vol. 7, article 206, 2006.
[32]  D. M. Spooner and T. Raul Castillo, “Reexamination of series relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction site variation,” American Journal of Botany, vol. 84, no. 5, pp. 671–685, 1997.
[33]  D. M. Spooner, K. McLean, G. Ramsay, R. Waugh, and G. J. Bryan, “A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14694–14699, 2005.
[34]  D. Gargano, N. Scotti, A. Vezzi et al., “Genome-wide analysis of plastome sequence variation and development of plastidial CAPS markers in common potato and related Solanum species,” Genetic Resources and Crop Evolution, pp. 1–12, 2011.
[35]  D. M. Spooner, G. J. Anderson, and R. K. Jansen, “Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae),” American Journal of Botany, vol. 80, no. 6, pp. 676–688, 1993.
[36]  T. L. Weese and L. Bohs, “A three-gene phylogeny of the genus Solanum (Solanaceae),” Systematic Botany, vol. 32, no. 2, pp. 445–463, 2007.
[37]  Y. Wang, A. Diehl, F. Wu et al., “Sequencing and comparative analysis of a conserved syntenic segment in the solanaceae,” Genetics, vol. 180, no. 1, pp. 391–408, 2008.
[38]  F. Wu and S. D. Tanksley, “Chromosomal evolution in the plant family Solanaceae,” BMC Genomics, vol. 11, no. 1, article 182, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413