全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Analysis of Twist1 and FGF Receptors in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin

DOI: 10.1155/2013/305971

Full-Text   Cite this paper   Add to My Lib

Abstract:

Craniosynostosis is the premature fusion of the cranial vault sutures. We have previously described a colony of rabbits with a heritable pattern of nonsyndromic, coronal suture synostosis; however, the underlying genetic defect remains unknown. We now report a molecular analysis to determine if four genes implicated in human craniosynostosis, TWIST1 and fibroblast growth factor receptors 1–3 (FGFR1–3), could be the loci of the causative mutation in this unique rabbit model. Single nucleotide polymorphisms (SNPs) were identified within the Twist1, FGFR1, and FGFR2 genes, and the allelic patterns of these silent mutations were examined in 22 craniosynostotic rabbits. SNP analysis of the Twist1, FGFR1, and FGFR2 genes indicated that none were the locus of origin of the craniosynostotic phenotype. In addition, no structural mutations were identified by direct sequence analysis of Twist1 and FGFR3 cDNAs. These data indicate that the causative locus for heritable craniosynostosis in this rabbit model is not within the Twist1, FGFR1, and FGFR2 genes. Although a locus in intronic or flanking sequences of FGFR3 remains possible, no direct structural mutation was identified for FGFR3. 1. Introduction Craniosynostosis (CS) is the premature fusion of one or more of the fibrous joints of the calvaria (cranial sutures). If this synostosis happens early enough in human development, it can lead to alterations in skull shape, reduced cranial growth, increased intracranial pressure, impaired blood flow, impaired vision and hearing, as well as mental retardation [1–7]. In most cases, surgical intervention is necessary to improve the patient’s prognosis [8–11]. There are extensive signaling networks present within the cranial sutures that allow for the coordinated growth of the skull [12]. One such network involves the fibroblast growth factor receptors (FGFRs). FGFRs belong to a family of tyrosine kinase receptors that exhibit a common organization, including two or three extracellular immunoglobulin (Ig) like binding domains, a transmembrane domain, and two intracellular tyrosine kinase subdomains [13]. The binding of FGF to FGFR in association with heparin sulphate proteoglycan (HSPG) induces receptor dimerization at the cell surface. This dimerization in turn leads to autophosphorylation that triggers phosphorylation of downstream signaling proteins [13]. In calvarial sutures, FGFs are secreted by osteoblasts at the differentiated edge of the bones; they activate receptors involved in both osteoprogenitor cell proliferation and function in the conversion of these cells

References

[1]  J. Bonaventure and V. El Ghouzzi, “Molecular and cellular bases of syndromic craniosynostoses,” Expert Reviews in Molecular Medicine, vol. 5, no. 4, pp. 1–17, 2003.
[2]  M. Cohen and R. MacLean, Craniosynostosis: Diagnosis, Evaluation, and Management, Oxford Press, New York, NY, USA, 2000.
[3]  M. M. Cohen, “Editorial: perspectives on craniosynostosis,” American Journal of Medical Genetics, vol. 136, no. 4, pp. 313–326, 2005.
[4]  G. M. Morriss-Kay and A. O. M. Wilkie, “Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies,” Journal of Anatomy, vol. 207, no. 5, pp. 637–653, 2005.
[5]  M. Mooney and J. Richtmeier, “Cranial sutures and calvaria: normal development and craniosynostosis,” in Craniofacial Growth and Development, J. Mao and D. Nah, Eds., Blackwell Munksgund Publishing, New York, NY, USA, In press.
[6]  K. Moore and T. Persaud, Before We Are Born: Essentials of Embryology and Birth Defects, Saunders, St. Louis, Miss, USA, 2007.
[7]  G. Sperber, Craniofacial Development, People's Medical Publishing House, Shelton, Conn, USA, 2001.
[8]  J. S. Chatterjee, M. Mahmoud, S. Karthikeyan, C. Duncan, M. S. Dover, and H. Nishikawa, “Referral pattern and surgical outcome of sagittal synostosis,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 2, pp. 211–215, 2009.
[9]  J. Esparza and J. Hinojosa, “Complications in the surgical treatment of craniosynostosis and craniofacial syndromes: apropos of 306 transcranial procedures,” Child's Nervous System, vol. 24, no. 12, pp. 1421–1430, 2008.
[10]  J. Esparza, J. Hinojosa, I. Garcia-Recuero, A. Romance, B. Pascual, and A. M. De, “Surgical treatment of isolated and syndromic craniosynostosis: results and complications in 283 consecutive cases,” Neurocirugia, vol. 19, no. 6, pp. 509–529, 2008.
[11]  T. Inagaki, S. Kyutoku, T. Seno et al., “The intracranial pressure of the patients with mild form of craniosynostosis,” Child's Nervous System, vol. 23, no. 12, pp. 1455–1459, 2007.
[12]  L. A. Opperman, “Cranial sutures as intramembranous bone growth sites,” Developmental Dynamics, vol. 219, no. 4, pp. 472–485, 2000.
[13]  N. Itoh, “The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease,” Biological and Pharmaceutical Bulletin, vol. 30, no. 10, pp. 1819–1825, 2007.
[14]  X. Nie, K. Luukko, and P. Kettunen, “FGF signalling in craniofacial development and developmental disorders,” Oral Diseases, vol. 12, no. 2, pp. 102–111, 2006.
[15]  M. R. Passos-Bueno, A. E. Serti Eacute, F. S. Jehee, R. Fanganiello, and E. Yeh, “Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations,” Frontiers of Oral Biology, vol. 12, pp. 107–143, 2008.
[16]  A. V. Ciurea and C. Toader, “Genetics of craniosynostosis: review of the literature,” Journal of Medicine and Life, vol. 2, no. 1, pp. 5–17, 2009.
[17]  A. O. M. Wilkie, “Craniosynostosis: genes and mechanisms,” Human Molecular Genetics, vol. 6, no. 10, pp. 1647–1656, 1997.
[18]  A. K. Coussens, C. R. Wilkinson, I. P. Hughes et al., “Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis,” BMC Genomics, vol. 8, article 458, 2007.
[19]  B. K. Hall, “Mechanisms of craniofacial development,” in Craniofacial Morphogenesis and Dysmorphogenesis, K. Vig and A. Burdi, Eds., pp. 1–23, 1998.
[20]  M. R. Passos-Bueno, A. E. Serti Eacute, F. S. Jehee, R. Fanganiello, and E. Yeh, “Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations,” Frontiers of Oral Biology, vol. 12, pp. 107–143, 2008.
[21]  M. K. Hajihosseini, “Fibroblast growth factor signaling in cranial suture development and pathogenesis,” Frontiers of Oral Biology, vol. 12, pp. 160–177, 2008.
[22]  M. Mohammadi, S. K. Olsen, and O. A. Ibrahimi, “Structural basis for fibroblast growth factor receptor activation,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 107–137, 2005.
[23]  F. Carinci, F. Pezzetti, P. Locci et al., “Apert and crouzon syndromes: clinical findings, genes and extracellular matrix,” Journal of Craniofacial Surgery, vol. 16, no. 3, pp. 361–368, 2005.
[24]  O. A. Ibrahimi, E. S. Chiu, J. G. McCarthy, and M. Mohammadi, “Understanding the molecular basis of Apert syndrome,” Plastic and Reconstructive Surgery, vol. 115, no. 1, pp. 264–270, 2005.
[25]  O. A. Ibrahimi, A. V. Eliseenkova, A. N. Plotnikov, K. Yu, D. M. Ornitz, and M. Mohammadi, “Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7182–7187, 2001.
[26]  E. W. Jabs, “Genetic etiologies of craniosynostoses,” in Understanding Craniofacial Anomalies: The Etiopathogenesis of Craniosynostosis and Facial Clefting, M. P. Mooney and M. I. Siegel, Eds., pp. 125–147, John Wiley and Sons, New York, NY, USA, 2002.
[27]  T. J. L. de Ravel, I. B. Taylor, A. J. T. Van Oostveldt, J. P. Fryns, and A. O. M. Wilkie, “A further mutation of the FGFR2 tyrosine kinase domain in mild Crouzon sydrome,” European Journal of Human Genetics, vol. 13, no. 4, pp. 503–505, 2005.
[28]  R. L. Glaser, W. Jiang, S. A. Boyadjiev et al., “Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome,” American Journal of Human Genetics, vol. 66, no. 3, pp. 768–777, 2000.
[29]  E. Lajeunie, S. Heuertz, V. El Ghouzzi et al., “Mutation screening in patients with syndromic craniosynostoses indicates that a limited number of recurrent FGFR2 mutations accounts for severe forms of Pfeiffer syndrome,” European Journal of Human Genetics, vol. 14, no. 3, pp. 289–298, 2006.
[30]  M. Muenke, U. Schell, A. Hehr et al., “A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome,” Nature Genetics, vol. 8, no. 3, pp. 269–274, 1994.
[31]  A. Vogels and J. P. Fryns, “Pfeiffer syndrome,” Orphanet Journal of Rare Diseases, vol. 1, no. 1, article 19, 2006.
[32]  M. Michael Cohen, “Jackson-Weiss syndrome,” American Journal of Medical Genetics, vol. 100, no. 4, pp. 325–329, 2001.
[33]  T. D. Howard, W. A. Paznekas, E. D. Green et al., “Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome,” Nature Genetics, vol. 15, no. 1, pp. 36–41, 1997.
[34]  V. E. Ghouzzi, M. L. Merrer, F. Perrin-Schmitt et al., “Mutations of the TWIST gene in the Saethre-Chotzen syndrome,” Nature Genetics, vol. 15, no. 1, pp. 42–46, 1997.
[35]  I. Krebs, I. Weis, M. Hudler et al., “Translocation breakpoint maps 5 kb 3' from TWIST in a patient affected with Saethre-Chotzen syndrome,” Human Molecular Genetics, vol. 6, no. 7, pp. 1079–1086, 1997.
[36]  M. L. Seto, A. V. Hing, J. Chang, et al., “Isolated sagittal and coronal craniosynostosis associated with TWIST Box mutations,” American Journal of Medical Genetics A, vol. 143, pp. 678–686, 2007.
[37]  H. Miraoui and P. J. Marie, “Pivotal role of Twist in skeletal biology and pathology,” Gene, vol. 468, no. 1-2, pp. 1–7, 2010.
[38]  E. A. Carver, K. F. Oram, and T. Gridley, “Craniosynostosis in Twist heterozygous mice: a model for Saethre-Chotzen syndrome,” Anatomical Record, vol. 268, no. 2, pp. 90–92, 2002.
[39]  M. P. Mooney, C. E. Aston, M. I. Siegel et al., “Craniosynostosis with autosomal dominant transmission in New Zealand white rabbits,” Journal of Craniofacial Genetics and Developmental Biology, vol. 16, no. 1, pp. 52–63, 1996.
[40]  M. P. Mooney, H. W. Losken, M. I. Siegel et al., “Development of a strain of rabbits with congenital simple nonsyndromic coronal suture synostosis—part II: somatic and craniofacial growth patterns,” Cleft Palate-Craniofacial Journal, vol. 31, no. 1, pp. 8–16, 1994.
[41]  M. P. Mooney, H. W. Losken, M. I. Siegel et al., “Development of a strain of rabbits with congenital simple nonsyndromic coronal suture synostosis—part I: breeding demographics, inheritance pattern, and craniofacial anomalies,” Cleft Palate-Craniofacial Journal, vol. 31, no. 1, pp. 1–7, 1994.
[42]  M. P. Mooney, M. I. Siegel, A. M. Burrows et al., “A rabbit model of human familial, nonsyndromic unicoronal suture synostosis. II. Intracranial contents, intracranial volume, and intracranial pressure,” Child's Nervous System, vol. 14, no. 6, pp. 247–255, 1998.
[43]  M. P. Mooney, M. I. Siegel, A. M. Burrows et al., “A rabbit model of human familial, nonsyndromic unicoronal suture synostosis. I. Synostotic onset, pathology, and sutural growth patterns,” Child's Nervous System, vol. 14, no. 6, pp. 236–246, 1998.
[44]  M. P. Mooney, T. D. Smith, A. M. Burrows et al., “Coronal suture pathology and synostotic progression in rabbits with congenital craniosynostosis,” Cleft Palate-Craniofacial Journal, vol. 33, no. 5, pp. 369–378, 1996.
[45]  J. J. Cray Jr., P. H. Gallo, E. L. Durham et al., “Molecular analysis of coronal perisutural tissues in a craniosynostotic rabbit model using polymerase chain reaction suppression subtractive hybridization,” Plastic and Reconstructive Surgery, vol. 128, no. 1, pp. 95–103, 2011.
[46]  Z. W. Yang, M. P. Mooney, and R. E. Ferrell, “Cloning and sequencing of the rabbit FGFR2 cDNA,” Mitochondrial DNA, vol. 11, no. 5, pp. 439–446, 2000.
[47]  H. R. Burgar, H. D. Burns, J. L. Elsden, M. D. Lalioti, and J. K. Heath, “Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (FGFR1) is mediated by alternative splicing of the juxtamembrane domain,” Journal of Biological Chemistry, vol. 277, no. 6, pp. 4018–4023, 2002.
[48]  S. R. F. Twigg, H. D. Burns, M. Oldridge, J. K. Heath, and A. O. M. Wilkie, “Conserved use of a non-canonical splice site (/GA) in alternative splicing by fibroblast growth factor receptors 1, 2 and 3,” Human Molecular Genetics, vol. 7, no. 4, pp. 685–691, 1998.
[49]  E. B. Pasquale, “A distinctive family of embryonic protein-tyrosine kinase receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 15, pp. 5812–5816, 1990.
[50]  N. Elanko, J. S. Sibbring, K. A. Metcalfe et al., “A survey of TWIST for mutations in craniosynostosis reveals a variable length polyglycine tract in asymptomatic individuals,” Human Mutation, vol. 18, no. 6, pp. 535–541, 2001.
[51]  M. L. Cunningham, M. L. Seto, C. Ratisoontorn, C. L. Heike, and A. V. Hing, “Syndromic craniosynostosis: from history to hydrogen bonds.,” Orthodontics & Craniofacial Research, vol. 10, no. 2, pp. 67–81, 2007.
[52]  M. P. Mooney, G. M. Cooper, A. M. Burrows et al., “Trigonocephaly in rabbits with familial interfrontal suture synostosis: the multiple effects of premature single-suture fusion,” The Anatomical Record, vol. 260, no. 3, pp. 238–251, 2000.
[53]  J. M. Ko, S. Y. Jeong, J. A. Yang, D. H. Park, and S. H. Yoon, “Molecular genetic analysis of TWIST1 and FGFR3 genes in Korean patients with coronal synostosis: identification of three novel TWIST1 mutations,” Plastic and Reconstructive Surgery, vol. 129, no. 5, pp. 814e–821e, 2012.
[54]  P. H. Gallo, J. J. Cray Jr., E. Lensie et al., “Cloning of TGFBR1 and TGFBR2 and likely exclusion as loci of origin in a rabbit craniosynostotic model,” The Cleft Palate-Craniofacial Journal. Under revision.
[55]  K. Horutz, K. R. Etzel, M. Owens et al., “In situ analysis of MSX2 expression in craniosynostotic rabbits,” Journal of Dental Research, vol. 75, article 120, 1996.
[56]  A. O. M. Wilkie, Z. Tang, N. Elanko et al., “Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification,” Nature Genetics, vol. 24, no. 4, pp. 387–390, 2000.
[57]  V. P. Sharma, A. L. Fenwick, M. S. Brockop, et al., “Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis,” Nature Genetics, vol. 45, no. 3, pp. 304–307, 2013.
[58]  M. R. Miller, J. P. Dunham, A. Amores, W. A. Cresko, and E. A. Johnson, “Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers,” Genome Research, vol. 17, no. 2, pp. 240–248, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413