全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Novelty of Human Cancer/Testis Antigen Encoding Genes in Evolution

DOI: 10.1155/2013/105108

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to be inherited in progeny generations, novel genes should originate in germ cells. Here, we suggest that the testes may play a special “catalyst” role in the birth and evolution of new genes. Cancer/testis antigen encoding genes (CT genes) are predominantly expressed both in testes and in a variety of tumors. By the criteria of evolutionary novelty, the CT genes are, indeed, novel genes. We performed homology searches for sequences similar to human CT in various animals and established that most of the CT genes are either found in humans only or are relatively recent in their origin. A majority of all human CT genes originated during or after the origin of Eutheria. These results suggest relatively recent origin of human CT genes and align with the hypothesis of the special role of the testes in the evolution of the gene families. 1. Introduction In order to be inherited in progeny generations, novel genes should originate in germ cells. Available data suggest that the generation of novel genes in germ cells is ongoing process, for example, the promiscuity of gene expression in spermatogenic cells [1, 2]. Novel genes may originate through different mechanisms (retrogenes, segmental duplicates, chimeric, and de novo emerged genes), but all of them are uniformly expressed in the testis ([3–8]; reviewed in [9]). These observations led us to suggest that testes may play a “tissue catalyst” role in the birth and evolution of new genes [9]. Previously, we proposed the expression of evolutionarily novel genes in tumors [10]. Cancer/testis or cancer/germline antigen genes are a class of genes with predominant expression in testis and in a variety of tumors, with a significant exclusion of some CT antigens also expressed in the brain. Here we set forth to test the hypothesis that cancer/testis antigen genes should be composed of evolutionarily new or young gene family. We performed homology searches for sequences similar to human CT in various animals. Additionally, as an extensive traffic of novel genes has been described for mammalian X chromosome [3, 6, 11], we also performed this analysis separately for genes located on this chromosome only. 2. Methods The list of CT antigens gene was retrieved from CT Database (http://www.cta.lncc.br) and included 265 genes. Among them, there are 105 CT antigens that are encoded by the X chromosome (CT-X genes) and 105 that are located on various autosomes (autosome CT genes, or non-X CT genes). Eight CT antigen encoding genes are located on the Y chromosome. To assess the evolutionary novelty of the studied group

References

[1]  E. E. Schmidt, “Transcriptional promiscuity in testes,” Current Biology, vol. 6, no. 7, pp. 768–769, 1996.
[2]  K. C. Kleene, “Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells,” Developmental Biology, vol. 277, no. 1, pp. 16–26, 2005.
[3]  E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002.
[4]  C. A. Paulding, M. Ruvolo, and D. A. Haber, “The Tre2 (USP6) oncogene is a hominoid-specific gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2507–2511, 2003.
[5]  X. She, Z. Cheng, S. Z?llner, D. M. Church, and E. E. Eichler, “Mouse segmental duplication and copy number variation,” Nature Genetics, vol. 40, no. 7, pp. 909–914, 2008.
[6]  M. T. Levine, C. D. Jones, A. D. Kern, H. A. Lindfors, and D. J. Begun, “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9935–9939, 2006.
[7]  T. J. A. J. Heinen, F. Staubach, D. H?ming, and D. Tautz, “Emergence of a new gene from an intergenic region,” Current Biology, vol. 19, no. 18, pp. 1527–1531, 2009.
[8]  H. Kaessmann, N. Vinckenbosch, and M. Long, “RNA-based gene duplication: mechanistic and evolutionary insights,” Nature Reviews Genetics, vol. 10, no. 1, pp. 19–31, 2009.
[9]  H. Kaessmann, “Origins, evolution, and phenotypic impact of new genes,” Genome Research, vol. 20, no. 10, pp. 1313–1326, 2010.
[10]  A. P. Kozlov, “The possible evolutionary role of tumors in the origin of new cell types,” Medical Hypotheses, vol. 74, no. 1, pp. 177–185, 2010.
[11]  J. J. Emerson, H. Kaessmann, E. Betrán, and M. Long, “Extensive gene traffic on the mammalian X chromosome,” Science, vol. 303, no. 5657, pp. 537–540, 2004.
[12]  E. W. Sayers, T. Barrett, D. A. Benson, et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 40, pp. D13–D25, 2012.
[13]  R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011, http://www.R-project.org/.
[14]  H. Sheffe, The Analysis of Variance, Wiley, New York, NY, USA, 1959.
[15]  H. Sheffe, “Multiple testing versus multiple estimation. Improper confidence sets. Estimation of directions and ratios,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 1–29, 1970.
[16]  L. A. Goodman, “Simultaneous confidence intervals for contrasts among multinomial populations,” The Annals of Mathematical Statistics, vol. 35, pp. 716–725, 1964.
[17]  A. J. W. Zendman, J. Zschocke, A. A. Van Kraats et al., “The human SPANX multigene family: genomic organization, alignment and expression in male germ cells and tumor cell lines,” Gene, vol. 309, no. 2, pp. 125–133, 2003.
[18]  A. J. W. Zendman, D. J. Ruiter, and G. N. P. Van Muijen, “Cancer/testis-associated genes: identification, expression profile, and putative function,” Journal of Cellular Physiology, vol. 194, no. 3, pp. 272–288, 2003.
[19]  A. J. G. Simpson, O. L. Caballero, A. Jungbluth, Y. T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005.
[20]  Y. T. Chen, C. Iseli, C. A. Yenditti, L. J. Old, A. J. G. Simpson, and C. V. Jongeneel, “Identification of a new cancer/testis gene family, CT47, among expressed multicopy genes on the human X chromosome,” Genes Chromosomes and Cancer, vol. 45, no. 4, pp. 392–400, 2006.
[21]  O. Hofmann, O. L. Caballero, B. J. Stevenson et al., “Genome-wide analysis of cancer/testis gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20422–20427, 2008.
[22]  P. Van Der Bruggen, C. Traversari, P. Chomez et al., “A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma,” Science, vol. 254, no. 5038, pp. 1643–1647, 1991.
[23]  U. Sahin, O. Tereci, H. Schmitt et al., “Human neoplasms elicit multiple specific immune responses in the autologous host,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11810–11813, 1995.
[24]  M. J. Scanlan, C. M. Gordon, B. Williamson et al., “Identification of cancer/testis genes by database mining and mRNA expression analysis,” International Journal of Cancer, vol. 98, no. 4, pp. 485–492, 2002.
[25]  M. J. Scanlan, A. J. Simpson, and L. J. Old, “The cancer/testis genes: review, standardization, and commentary,” Cancer Immunity, vol. 4, article 1, 2004.
[26]  Y. T. Chen, M. J. Scanlan, C. A. Venditti et al., “Identification of cancer/testis-antigen genes by massively parallel signature sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7940–7945, 2005.
[27]  Y. H. Cheng, E. W. P. Wong, and C. Y. Cheng, “Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis,” Spermatogenesis, vol. 1, pp. 209–220, 2011.
[28]  P. Chomez, O. De Backer, M. Bertrand, E. De Plaen, T. Boon, and S. Lucas, “An overview of the MAGE gene family with the identification of all human members of the family,” Cancer Research, vol. 61, no. 14, pp. 5544–5551, 2001.
[29]  Y. Katsura and Y. Satta, “Evolutionary history of the cancer immunity antigen MAGE gene family,” PLoS ONE, vol. 6, no. 6, Article ID e20365, 2011.
[30]  M. T. Ross, D. V. Grafham, A. J. Coffey, et al., “The DNA sequence of the human X chromosome,” Nature, vol. 434, pp. 325–337, 2005.
[31]  E. Fratta, S. Coral, A. Covre et al., “The biology of cancer testis antigens: putative function, regulation and therapeutic potential,” Molecular Oncology, vol. 5, no. 2, pp. 164–182, 2011.
[32]  O. L. Caballero and Y. T. Chen, “Cancer/testis (CT) antigens: potential targets for immunotherapy,” Cancer Science, vol. 100, no. 11, pp. 2014–2021, 2009.
[33]  U. Sahin, O. Tureci, Y. T. Chen et al., “Expression of multiple cancer/testis antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies,” International Journal of Cancer, vol. 78, pp. 387–389, 1998.
[34]  S. N. Akers, K. Odunsi, and A. R. Karpf, “Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy,” Future Oncology, vol. 6, no. 5, pp. 717–732, 2010.
[35]  N. Kouprina, M. Mullokandov, I. B. Rogozin et al., “The SPANX gene family of cancer/testis-specific antigens: rapid evolution and amplification in African great apes and hominids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3077–3082, 2004.
[36]  H. Skaletsky, T. Kuroda-Kawaguchl, P. J. Minx et al., “The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes,” Nature, vol. 423, no. 6942, pp. 825–837, 2003.
[37]  P. E. Warburton, J. Giordano, F. Cheung, Y. Gelfand, and G. Benson, “Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeated that contain testes genes,” Genome Research A, vol. 14, no. 10, pp. 1861–1869, 2004.
[38]  IHGSC, “International human genome sequencing consortium,” Nature, vol. 431, pp. 931–945, 2004.
[39]  Z. Birtle, L. Goodstadt, and C. Ponting, “Duplication and positive selection among hominin-specific PRAME genes,” BMC Genomics, vol. 6, article 120, 2005.
[40]  T. C. Chang, Y. Yang, H. Yasue, A. K. Bharti, E. F. Retzel, and W. S. Liu, “The expansion of the PRAME gene family in Eutheria,” PLoS ONE, vol. 6, no. 2, Article ID e16867, 2011.
[41]  B. J. Stevenson, C. Iseli, S. Panji et al., “Rapid evolution of cancer/testis genes on the X chromosome,” BMC Genomics, vol. 8, article 129, 2007.
[42]  N. Kouprina, V. N. Noskov, A. Pavlicek et al., “Evolutionary diversification of SPANX-N sperm protein gene structure and expression,” PLoS ONE, vol. 2, no. 4, article e359, 2007.
[43]  Y. Liu, Q. Zhu, and N. Zhu, “Recent duplication and positive selection of the GAGE gene family,” Genetica, vol. 133, no. 1, pp. 31–35, 2008.
[44]  M. F. Gjerstorff and H. J. Ditzel, “An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members,” Tissue Antigens, vol. 71, no. 3, pp. 187–192, 2008.
[45]  A. J. W. Zendman, A. A. Van Kraats, U. H. Weidle, D. J. Ruiter, and G. N. P. Van Muijen, “The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing's sarcoma,” International Journal of Cancer, vol. 99, no. 3, pp. 361–369, 2002.
[46]  S. Sato, Y. Noguchi, N. Ohara et al., “Identification of XAGE-1 isoforms: predominant expression of XAGE-1b in testis and tumors,” Cancer Immunity, vol. 7, article 5, 2007.
[47]  Y. T. Chen, M. Hsu, P. Lee et al., “Cancer/testis antigen CT45: analysis of mRNA and protein expression in human cancer,” International Journal of Cancer, vol. 124, no. 12, pp. 2893–2898, 2009.
[48]  Y. T. Chen, A. Chadburn, P. Lee et al., “Expression of cancer testis antigen CT45 in classical Hodgkin lymphoma and other B-cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3093–3098, 2010.
[49]  H. J. Heidebrecht, A. Claviez, M. L. Kruse, et al., “Characterization and expression of CT45 in Hodgkin's lymphoma,” Clinical Cancer Research, vol. 12, pp. 4804–4811, 2006.
[50]  B. T. Lahn and D. C. Page, “Four evolutionary strata on the human X chromosome,” Science, vol. 286, no. 5441, pp. 964–967, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413