全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

DOI: 10.1155/2013/678969

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future. 1. Introduction All plant species are continuously fighting with different biotic and abiotic stresses for their existence. The stresses like harsh environmental conditions, desiccation, UV radiation, and attack of microbial pathogens may affect growth and development in the plants and sometimes lead to their death. Although all plants have different natural defense mechanisms against these stresses, in most cases, plants activate the phenylpropanoid pathway in response to pathogen attack or to elicitors [1]. In the plant phenylpropanoid pathway, phenylalanine ammonia lyase (PAL) is a key enzyme that catalyses the first step in the pathway and not only leads to the accumulation of phytoalexins [2] but also contributes in growth and development of plants and responses to biotic stresses [3, 4]. The plant peroxidase (POX) genes are heme-containing glycoproteins present in large numbers in higher plants [5]. These genes are involved in defense against pathogen infection or insect attack, and several other physiological functions such as H2O2 removal, toxic reduction, oxidation, lignification, suberization, auxin catabolism, and wound healing in plants [5, 6]. Plants contain multiple isoforms for peroxidases, which respond to stresses in different or similar ways by making POX genes

References

[1]  L. G. Korkina, “Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health,” Cellular and Molecular Biology, vol. 53, no. 1, pp. 15–25, 2007.
[2]  R. A. C. Ruiz, C. Herrera, M. Ghislain, and C. Gebhardt, “Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome,” Molecular Genetics and Genomics, vol. 274, no. 2, pp. 168–179, 2005.
[3]  R. A. Dixon and N. L. Paiva, “Stress-induced phenylpropanoid metabolism,” The Plant Cell, vol. 7, no. 7, pp. 1085–1097, 1995.
[4]  J. Huang, M. Gu, Z. Lai, et al., “Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress,” Plant Physiology, vol. 153, pp. 1526–1538, 2010.
[5]  M. L. Chang, N. Y. Chen, L. J. Liao, C. L. Cho, and Z. H. Liu, “Effect of cadmium on peroxidase isozyme activity in roots of two Oryza sativa cultivars,” Botanical Studies, vol. 53, pp. 31–44, 2012.
[6]  S. Hiraga, K. Sasaki, H. Ito, Y. Ohashi, and H. Matsui, “A large family of class III plant peroxidases,” Plant and Cell Physiology, vol. 42, no. 5, pp. 462–468, 2001.
[7]  K. Sasaki, T. Iwai, S. Hiraga et al., “Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus,” Plant and Cell Physiology, vol. 45, no. 10, pp. 1442–1452, 2004.
[8]  K. G. Welinder, “Superfamily of plant, fungal and bacterial peroxidises,” Current Opinion in Structural Biology, vol. 2, no. 3, pp. 388–393, 1992.
[9]  H. Ito, S. Hiraga, H. Tsugawa et al., “Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants,” Plant Science, vol. 155, no. 1, pp. 85–100, 2000.
[10]  D. A. Samac and M. A. Graham, “Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective,” Plant Physiology, vol. 144, no. 2, pp. 582–587, 2007.
[11]  D. Lijavetzky, P. Carbonero, and J. Vicente-Carbajosa, “Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families,” BMC Evolutionary Biology, vol. 3, article 17, 2003.
[12]  M. Martínez, Z. Abraham, P. Carbonero, and I. Díaz, “Comparative phylogenetic analysis of cystatin gene families from Arabidopsis, rice and barley,” Molecular Genetics and Genomics, vol. 273, no. 5, pp. 423–432, 2005.
[13]  N. O'Toole, M. Hattori, C. Andres, et al., “On the expansion of the pentatricopeptide repeat gene family in plants,” Molecular Biology and Evolution, vol. 25, no. 6, pp. 1120–1128, 2008.
[14]  Z. Yang, X. Wang, S. Gu, Z. Hu, H. Xu, and C. Xu, “Comparative study of SBP-box gene family in Arabidopsis and rice,” Gene, vol. 407, no. 1-2, pp. 1–11, 2008.
[15]  C. Di, W. Xu, Z. Su, and J. S. Yuan, “Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function,” BMC Bioinformatics, vol. 11, no. 6, article 22, 2010.
[16]  L. Mirabello, M. Yeager, S. Chowdhury et al., “Worldwide genetic structure in 37 genes important in telomere biology,” Heredity, vol. 108, pp. 124–133, 2012.
[17]  F. E. Pryde, H. C. Gorham, and E. J. Louis, “Chromosome ends: all the same under their caps,” Current Opinion in Genetics and Development, vol. 7, no. 6, pp. 822–828, 1997.
[18]  C. Rehmeyer, W. Li, M. Kusaba et al., “Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae,” Nucleic Acids Research, vol. 34, no. 17, pp. 4685–4701, 2006.
[19]  J. D. Barry, M. L. Ginger, P. Burton, and R. McCulloch, “Why are parasite contingency genes often associated with telomeres?” International Journal for Parasitology, vol. 33, no. 1, pp. 29–45, 2003.
[20]  C. A. Brown, A. W. Murray, and K. J. Verstrepen, “Rapid expansion and functional divergence of subtelomeric gene families in yeasts,” Current Biology, vol. 20, no. 10, pp. 895–903, 2010.
[21]  E. V. Koonin, “Orthologs, paralogs, and evolutionary genomics,” Annual Review of Genetics, vol. 39, pp. 309–338, 2005.
[22]  W. M. Fitch, “Distinguishing homologous from analogous proteins,” Systematic Zoology, vol. 19, no. 2, pp. 99–113, 1970.
[23]  M. R. Remm, C. E. V. Storm, and E. L. L. Sonnhammer, “Automatic clustering of orthologs and in-paralogs from pairwise species comparisons,” Journal of Molecular Biology, vol. 314, no. 5, pp. 1041–1052, 2001.
[24]  B. Han and Q. Zhang, “Rice genome research: current status and future perspectives,” The Plant Genome Journal, vol. 1, no. 2, pp. 71–76, 20087.
[25]  J. Li, H. Zhang, D. Wang, et al., “Rice omics and biotechnology in China,” Plant Omics Journal, vol. 4, pp. 302–317, 2011.
[26]  H. Nakagami, N. Sugiyama, K. Mochida et al., “Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants,” Plant Physiology, vol. 153, no. 3, pp. 1161–1174, 2010.
[27]  R. E. Voorrips, “Mapchart: software for the graphical presentation of linkage maps and QTLs,” The Journal of Heredity, vol. 93, no. 1, pp. 77–78, 2002.
[28]  J. A. Studier and K. J. Kepler, “A note on the neighbour-joining method of Saitou and Nei,” Molecular Biology and Evolution, vol. 5, pp. 729–731, 1988.
[29]  N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987.
[30]  M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007.
[31]  S. B. Hedges, “The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies,” Molecular Biology and Evolution, vol. 9, no. 2, pp. 366–369, 1992.
[32]  T. L. Bailey and C. Elkan, “Fitting a mixture model by expectation maximization to discover motifs in biopolymers,” in Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, pp. 28–36, AAAI Press, Stanford, Calif, USA, August 1994.
[33]  I. Letunic and P. Bork, “Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy,” Nucleic Acids Research, vol. 39, pp. W475–W478, 2011.
[34]  T. Hulsen, M. A. Huynen, J. de Vlieg, and P. M. A. Groenen, “Benchmarking ortholog identification methods using functional genomics data,” Genome Biology, vol. 7, no. 4, article R31, 2006.
[35]  W. M. Fitch, “Homologya personal view on some of the problems,” Trends in Genetics, vol. 16, no. 5, pp. 227–231, 2000.
[36]  R. A. Jensen, “Orthologs and paralogs—we need to get it right,” Genome Biology, vol. 2, no. 8, 2001.
[37]  S. M. Brady, S. Song, K. S. Dhugga, J. A. Rafalski, and P. N. Benfey, “Combining expression and comparative evolutionary analysis. The COBRA gene family,” Plant Physiology, vol. 143, no. 1, pp. 172–187, 2007.
[38]  A. J. Heidel, H. M. Lawal, M. Felder, et al., “Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication,” Genome Research, vol. 21, pp. 1882–1891, 2011.
[39]  M. Krzywinski, J. Schein, I. Birol, et al., “Circos: an information aesthetic for comparative genomics,” Genome Research, vol. 19, pp. 1639–1645, 2009.
[40]  R. Trivers, A. Burt, and B. G. Palestis, “B chromosomes and genome size in flowering plants,” Genome, vol. 47, no. 1, pp. 1–8, 2004.
[41]  A. E. Vinogradov, “Mirrored genome size distributions in monocot and dicot plants,” Acta Biotheoretica, vol. 49, no. 1, pp. 43–51, 2001.
[42]  K. G. Welinder, A. F. Justesen, I. V. H. Kjaesgard, et al., “Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana,” European Journal of Biochemistry, vol. 269, pp. 6063–6081, 2002.
[43]  F. Passardi, D. Longet, C. Penel, and C. Dunand, “The class III peroxidase multigenic family in rice and its evolution in land plants,” Phytochemistry, vol. 65, no. 13, pp. 1879–1893, 2004.
[44]  G. P. Moran, D. C. Coleman, and D. J. Sullivan, “Comparative genomics and the evolution of pathogenicity in human pathogenic fungi,” Eukaryotic Cell, vol. 10, no. 1, pp. 34–42, 2011.
[45]  F. C. Cochrane, L. B. Davin, and N. G. Lewis, “The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms,” Phytochemistry, vol. 65, no. 11, pp. 1557–1564, 2004.
[46]  J. Raes, A. Rohde, J. H. Christensen, Y. van de Peer, and W. Boerjan, “Genome-wide characterization of the lignification toolbox in Arabidopsis,” Plant Physiology, vol. 133, no. 3, pp. 1051–1071, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133