全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relationship of Worldwide Rocket Launch Crashes with Geophysical Parameters

DOI: 10.1155/2013/297310

Full-Text   Cite this paper   Add to My Lib

Abstract:

A statistical comparison of launch crashes at different worldwide space ports with geophysical factors has been performed. A comprehensive database has been compiled, which includes 50 years of information from the beginning of the space age in 1957 about launch crashes occurring world-wide. Special attention has been paid to statistics concerning launches at the largest space ports: Plesetsk, Baikonur, Cape Canaveral, and Vandenberg. In search of a possible influence of geophysical factors on launch failures, such parameters as the vehicle type, local time, season, sunspot number, high-energy electron fluxes, and solar proton events have been examined. Also, we have analyzed correlations with the geomagnetic indices as indirect indicators of the space weather condition. Regularities found in this study suggest that further detailed studies of space weather effects on launcher systems, especially in the high-latitude regions, should be performed. 1. Introduction Since the beginning of the space era in 1957 more than 5000 space vehicles have been launched from different space ports in the world. Details of world-wide space ports (latitude/longitude, operational period, total number of launches, and launch crashes) are listed in Table 1, and their locations are shown in Figure 1. However, 384 of these launches were reported to have failed through 2008. The total number of launches and crashes at the major space ports from 1957 till 2008 is shown in Figure 2. Table 1: Main world space ports. Figure 1: World map locations of main space sites. Arrows indicate the main direction of rocket trajectory after launch. The key world-wide spaceports are as follows: (1) Plesetsk, (2) Kapustin Yar, (3) Baykonur, (4) Jiuquan Space Center, (5) Taiyuan Satellite Launch Center, (6) Tanegashima Space Center, (7) Kagoshima Space Center, (8) Sea Launch, (9) Vandenberg, (10) Cape Canaveral, (11) Wallops space factory, and (12) Centre Spatial Guyanais (Kourou). Figure 2: Number of launches from the most-used space ports in the world from 1957 till 2008. Red mark denotes crashes. Launch crashes are commonly attributed to engineering faults in the rocket equipment and/or control system during launch. Specifically, the reason behind launch crashes can be due to a wide range of reasons: construction errors of the rocket launcher and launch complex systems; breakdown in the preparation process; human factor. Crashes during the prime stage phase of launch (up to an altitude of ~100?km) are mainly caused by combustion instability, ignition failure, turbopump overheating, insufficient

References

[1]  R. B. Horne, Benefits of a space weather programme, ESA Space Weather Programme Study, BAS Contract 300738, ESA ITT AO/1-3353/99/NL/SB, 2001.
[2]  D. N. Baker, J. H. Allen, S. G. Kanekal, and G. D. Reeves, “Disturbed space environment may have been related to pager satellite failure,” Eos, Transactions American Geophysical Union, vol. 79, no. 40, pp. 477–483, 1998.
[3]  D. N. Baker, “The occurrence of operational anomalies in spacecraft and their relationship to space weather,” IEEE Transactions on Plasma Science, vol. 28, no. 6, pp. 2007–2016, 2000.
[4]  D. F. Webb and J. H. Allen, “Spacecraft and ground anomalies related to the October-November 2003 solar activity,” Space Weather, vol. 2, no. 3, 2004.
[5]  N. Iucci, A. E. Levitin, A. V. Belov, et al., “Space weather conditions and spacecraft anomalies in different orbits,” Space Weather, vol. 3, no. 1, 2005.
[6]  V. Pilipenko, N. Yagova, N. Romanova, and J. Allen, “Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles,” Advances in Space Research, vol. 37, no. 6, pp. 1192–1205, 2006.
[7]  N. V. Romanova, V. A. Pilipenko, N. V. Yagova, and A. V. Belov, “Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons,” Cosmic Research, vol. 43, no. 3, pp. 186–193, 2005.
[8]  D. H. Boteler, R. J. Pirjola, and H. Nevanlinna, “The effects of geomagnetic disturbances on electrical systems at the Earth's surface,” Advances in Space Research, vol. 22, no. 1, pp. 17–27, 1998.
[9]  E. G. Stassinopoulos, C. A. Stauffer, and G. J. Brucker, “A systematic global mapping of the radiation field at aviation altitudes,” Space Weather, vol. 1, no. 1, 2003.
[10]  G. Siscoe, “The space-weather enterprise: past, present, and future,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 14, pp. 1223–1232, 2000.
[11]  C. Kunstadter, “Space insurance experience and outlook: a statistical review of volatility,” in Presentation at the Federal Aviation Administration's Commercial Space Transportation Advisory Committee (FAA COMSTAC '05), 2005.
[12]  N. V. Romanova, V. A. Chizhenkov, and V. A. Pilipenko, “Possible relation of emergencies during spacecraft launches from the Plesetsk site to high-latitude geomagnetic disturbances,” Geomagnetism and Aeronomy, vol. 49, no. 1, pp. 104–109, 2009.
[13]  R. L. Plackett, “Karl Pearson and the Chi-Squared test,” International Statistical Review, vol. 51, no. 1, pp. 59–72, 1983.
[14]  C. Behrens, “Space launch vehicles: government activities, commercial competition, and satellite exports,” Tech. Rep., Congressional Research Service, Washington, DC, USA, 2006.
[15]  E. Paulson, “On the comparison of several experimental categories with a control,” Annals of Mathematical Statistics, vol. 23, pp. 239–246, 1952.
[16]  R. Tripathi and A. Mishra, “Occurrence of severe geomagnetic storms and their association with solar-interplanetary features,” in Proceedings of the ILWS Workshop on Solar Influence on the Heliosphere and Earth's Environment, Goa, India, February 2006.
[17]  J. H. Allen, “Historical and recent solar activity and geomagnetic storms affecting spacecraft operations,” in Proceedings of the Government Microcircuit and Applications Conference (GOMAC '02), Monterey, Calif, USA, March 2002.
[18]  D. Boscher, J. L. Bougeret, J. Breton, P. Lantos, J. Y. Prado, and M. Romero, Space Weather Final Report from the French Evaluation Group on Needs, European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999.
[19]  D. S. Hazen, W. P. Roeder, B. F. Boyd, J. B. Lorens, and T. L. Wilde, “Weather impact on launch operations at the eastern range and kennedy space center,” in Proceedings of the 6th Conference on Aviation Weather Systems, pp. 270–275, January 1995.
[20]  T. Neubert, M. Rycroft, T. Farges et al., “Recent results from studies of electric discharges in the mesosphere,” Surveys in Geophysics, vol. 29, no. 2, pp. 71–137, 2008.
[21]  M. C. Kelley, U. V. Fahleson, G. Holmgren, R. Bostrom, P. M. Kintner, and E. Kudeki, “Generation and propagation of an electromagnetic pulse in the Trigger experiment and its possible role in electron acceleration,” Journal of Geophysical Research, vol. 85, pp. 5055–5060, 1980.
[22]  A. W. Yau and B. A. Whalen, “Auroral perturbation experiments,” Advances in Space Research, vol. 8, no. 1, pp. 67–77, 1988.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133