全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Pretransplant Hepatic Encephalopathy on Liver Posttransplantation Outcomes

DOI: 10.1155/2013/952828

Full-Text   Cite this paper   Add to My Lib

Abstract:

Patients with cirrhosis commonly experience hepatic encephalopathy (HE), a condition associated with alterations in behavior, cognitive function, consciousness, and neuromuscular function of varying severity. HE occurring before liver transplant can have a substantial negative impact on posttransplant outcomes, and preoperative history of HE may be a predictor of posttransplant neurologic complications. Even with resolution of previous episodes of overt or minimal HE, some patients continue to experience cognitive deficits after transplant. Because HE is one of the most frequent pretransplant complications, improving patient HE status before transplant may improve outcomes. Current pharmacologic therapies for HE, whether for the treatment of minimal or overt HE or for prevention of HE relapse, are primarily directed at reducing cerebral exposure to systemic levels of gut-derived toxins (e.g., ammonia). The current mainstays of HE therapy are nonabsorbable disaccharides and antibiotics. The various impacts of adverse effects (such as diarrhea, abdominal distention, and dehydration) on patient's health and nutritional status should be taken into consideration when deciding the most appropriate HE management strategy in patients awaiting liver transplant. This paper reviews the potential consequences of pretransplant HE on posttransplant outcomes and therapeutic strategies for the pretransplant management of HE. 1. Introduction Cirrhosis of the liver—the only cure for which is liver transplant—is associated with several serious complications, including ascites, spontaneous bacterial peritonitis, variceal bleeding, and hepatic encephalopathy (HE) [1]. Guidelines established by the American Association for the Study of Liver Diseases currently recommend referring patients with cirrhosis for liver transplant when their model for end-stage liver disease (MELD) score is ≥10 and their Child-Turcotte-Pugh (CTP) score is ≥7 or when they experience their first major complication (e.g., HE, ascites, or variceal bleeding) [2]. However, the current United Network for Organ Sharing allocation system only uses the MELD score for prioritizing adults for liver transplant [3]. The MELD scoring system evaluates a patient’s short-term prognosis based on 3 common laboratory test results: serum bilirubin, international normalized ratio, and serum creatinine levels. However, this scoring system does not take into account several serious complications of cirrhosis, such as HE, when prioritizing patients for liver transplant [4]. This may have negative ramifications for patient

References

[1]  G. Garcia-Tsao and J. Lim, “Management and treatment of patients with cirrhosis and portal hypertension: recommendations from the Department of Veterans Affairs Hepatitis C Resource Center Program and the National Hepatitis C Program,” American Journal of Gastroenterology, vol. 104, no. 7, pp. 1802–1829, 2009.
[2]  K. F. Murray and R. L. Carithers Jr., “AASLD practice guidelines: evaluation of the patient for liver transplantation,” Hepatology, vol. 41, no. 6, pp. 1407–1432, 2005.
[3]  Organ Procurement and Transplantation Network, “Organ distribution—allocation of livers,” 2012, http://optn.transplant.hrsa.gov/PoliciesandBylaws2/policies/pdfs/policy_8.pdf.
[4]  S. Saab, A. B. Ibrahim, A. Shpaner et al., “MELD fails to measure quality of life in liver transplant candidates,” Liver Transplantation, vol. 11, no. 2, pp. 218–223, 2005.
[5]  F. F. Poordad, “Review article: the burden of hepatic encephalopathy,” Alimentary Pharmacology and Therapeutics, vol. 25, supplement 5, pp. 3–9, 2007.
[6]  M. Stepanova, A. Mishra, C. Venkatesan, et al., “In-hospital mortality and economic burden associated with hepatic encephalopathy in the United States from 2005 to 2009,” Clinical Gastroenterology and Hepatology, vol. 10, no. 9, pp. 1034–1041, 2012.
[7]  P. Ferenci, A. Lockwood, K. Mullen, R. Tarter, K. Weissenborn, and A. T. Blei, “Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998,” Hepatology, vol. 35, no. 3, pp. 716–721, 2002.
[8]  M. R. Arguedas, T. G. DeLawrence, and B. M. McGuire, “Influence of hepatic encephalopathy on health-related quality of life in patients with cirrhosis,” Digestive Diseases and Sciences, vol. 48, no. 8, pp. 1622–1626, 2003.
[9]  G. Kircheis, A. Knoche, N. Hilger et al., “Hepatic encephalopathy and fitness to drive,” Gastroenterology, vol. 137, no. 5, pp. 1706–1715, 2009.
[10]  J. S. Bajaj, M. Hafeezullah, Y. Zadvornova et al., “The effect of fatigue on driving skills in patients with hepatic encephalopathy,” American Journal of Gastroenterology, vol. 104, no. 4, pp. 898–905, 2009.
[11]  J. S. Bajaj, J. B. Wade, D. P. Gibson et al., “The multi-dimensional burden of cirrhosis and hepatic encephalopathy on patients and caregivers,” American Journal of Gastroenterology, vol. 106, no. 9, pp. 1646–1653, 2011.
[12]  A. Said, J. Williams, J. Holden et al., “Model for end stage liver disease score predicts mortality across a broad spectrum of liver disease,” Journal of Hepatology, vol. 40, no. 6, pp. 897–903, 2004.
[13]  A. Pujol, F. Graus, A. Rimola et al., “Predictive factors of in-hospital CNS complications following liver transplantation,” Neurology, vol. 44, no. 7, pp. 1226–1230, 1994.
[14]  S. Mechtcheriakov, I. W. Graziadei, M. Mattedi et al., “Incomplete improvement of visuo-motor deficits in patients with minimal hepatic encephalopathy after liver transplantation,” Liver Transplantation, vol. 10, no. 1, pp. 77–83, 2004.
[15]  F. Lazeyras, L. Spahr, R. DuPasquier et al., “Persistence of mild parkinsonism 4 months after liver transplantation in patients with preoperative minimal hepatic encephalopathy: a study on neuroradiological and blood manganese changes,” Transplant International, vol. 15, no. 4, pp. 188–195, 2002.
[16]  R. E. Tarter, J. Switala, A. Arria, J. Plail, and D. H. Van Thiel, “Subclinical hepatic encephalopathy. Comparison before and after orthotopic liver transplantation,” Transplantation, vol. 50, no. 4, pp. 632–637, 1990.
[17]  A. Huda, B. H. Guze, M. A. Thomas et al., “Clinical correlation of neuropsychological tests with 1H magnetic resonance spectroscopy in hepatic encephalopathy,” Psychosomatic Medicine, vol. 60, no. 5, pp. 550–556, 1998.
[18]  M. Guevara, M. E. Baccaro, B. Gómez-Ansón et al., “Cerebral magnetic resonance imaging reveals marked abnormalities of brain tissue density in patients with cirrhosis without overt hepatic encephalopathy,” Journal of Hepatology, vol. 55, no. 3, pp. 564–573, 2011.
[19]  D. J. Bronster, S. Emre, P. Boccagni, P. A. Sheiner, M. E. Schwartz, and C. M. Miller, “Central nervous system complications in liver transplant recipients—incidence, timing, and long-term follow-up,” Clinical Transplantation, vol. 14, no. 1, pp. 1–7, 2000.
[20]  R. Dhar, G. B. Young, and P. Marotta, “Perioperative neurological complications after liver transplantation are best predicted by pre-transplant hepatic encephalopathy,” Neurocritical Care, vol. 8, no. 2, pp. 253–258, 2008.
[21]  E. U. Sotil, J. Gottstein, E. Ayala, C. Randolph, and A. T. Blei, “Impact of preoperative overt hepatic encephalopathy on neurocognitive function after Liver transplantion,” Liver Transplantation, vol. 15, no. 2, pp. 184–192, 2009.
[22]  J. S. Bajaj, C. M. Schubert, D. M. Heuman et al., “Persistence of cognitive impairment after resolution of overt hepatic encephalopathy,” Gastroenterology, vol. 138, no. 7, pp. 2332–2340, 2010.
[23]  S. Prasad, R. K. Dhiman, A. Duseja, Y. K. Chawla, A. Sharma, and R. Agarwal, “Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy,” Hepatology, vol. 45, no. 3, pp. 549–559, 2007.
[24]  H. Schomerus and W. Hamster, “Quality of life in cirrhotics with minimal hepatic encephalopathy,” Metabolic Brain Disease, vol. 16, no. 1-2, pp. 37–41, 2001.
[25]  M. Groeneweg, J. C. Quero, I. De Bruijn et al., “Subclinical hepatic encephalopathy impairs daily functioning,” Hepatology, vol. 28, no. 1, pp. 45–49, 1998.
[26]  M. Guevara, M. E. Baccaro, A. Torre et al., “Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis,” American Journal of Gastroenterology, vol. 104, no. 6, pp. 1382–1389, 2009.
[27]  M. J. McPhail, J. S. Bajaj, H. C. Thomas, and S. D. Taylor-Robinson, “Pathogenesis and diagnosis of hepatic encephalopathy,” Expert Review of Gastroenterology and Hepatology, vol. 4, no. 3, pp. 365–378, 2010.
[28]  R. F. Butterworth, “Pathophysiology of hepatic encephalopathy: a new look at ammonia,” Metabolic Brain Disease, vol. 17, no. 4, pp. 221–227, 2002.
[29]  S. M. Riordan and R. Williams, “Treatment of hepatic encephalopathy,” New England Journal of Medicine, vol. 337, no. 7, pp. 473–479, 1997.
[30]  G. Ardizzone, A. Arrigo, M. M. Schellino et al., “Neurological complications of liver cirrhosis and orthotopic liver transplant,” Transplantation Proceedings, vol. 38, no. 3, pp. 789–792, 2006.
[31]  F. H. Saner, J. Gensicke, S. W. M. O. Damink et al., “Neurologic complications in adult living donor liver transplant patients: an underestimated factor?” Journal of Neurology, vol. 257, no. 2, pp. 253–258, 2010.
[32]  R. Moreno and M. Berenguer, “Post-liver transplantation medical complications,” Annals of Hepatology, vol. 5, no. 2, pp. 77–85, 2006.
[33]  R. Blanco, U. De Girolami, R. L. Jenkins, and U. Khettry, “Neuropathology of liver transplantation,” Clinical Neuropathology, vol. 14, no. 2, pp. 109–117, 1995.
[34]  A. J. Martinez, C. Estol, and A. A. Faris, “Neurologic complications of liver transplantation,” Neurologic Clinics, vol. 6, no. 2, pp. 327–348, 1988.
[35]  N. Ghaus, S. Bohlega, and M. Rezeig, “Neurological complications in liver transplantation,” Journal of Neurology, vol. 248, no. 12, pp. 1042–1048, 2001.
[36]  F. Saner, Y. Gu, S. Minouchehr et al., “Neurological complications after cadaveric and living donor liver transplantation,” Journal of Neurology, vol. 253, no. 5, pp. 612–617, 2006.
[37]  M. Guarino, A. Stracciari, P. Pazzaglia et al., “Neurological complications of liver transplantation,” Journal of Neurology, vol. 243, no. 2, pp. 137–142, 1996.
[38]  O. Riggio, L. Ridola, C. Pasquale et al., “Evidence of persistent cognitive impairment after resolution of overt hepatic encephalopathy,” Clinical Gastroenterology and Hepatology, vol. 9, no. 2, pp. 181–183, 2011.
[39]  K. Mattarozzi, A. Stracciari, L. Vignatelli, R. D'Alessandro, M. C. Morelli, and M. Guarino, “Minimal hepatic encephalopathy: longitudinal effects of liver transplantation,” Archives of Neurology, vol. 61, no. 2, pp. 242–247, 2004.
[40]  D. K. Atluri, M. Asgeri, and K. D. Mullen, “Reversibility of hepatic encephalopathy after liver transplantation,” Metabolic Brain Disease, vol. 25, no. 1, pp. 111–113, 2010.
[41]  T. Naegele, W. Grodd, R. Viebahn et al., “MR imaging and 1H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation,” Radiology, vol. 216, no. 3, pp. 683–691, 2000.
[42]  R. Garcia-Martinez, A. Rovira, J. Alonso et al., “Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume,” Liver Transplantation, vol. 17, no. 1, pp. 38–46, 2011.
[43]  B. Als-Nielsen, L. L. Gluud, and C. Gluud, “Non-absorbable disaccharides for hepatic encephalopathy: systematic review of randomised trials,” British Medical Journal, vol. 328, no. 7447, pp. 1046–1050, 2004.
[44]  S. Shukla, A. Shukla, S. Mehboob, and S. Guha, “Meta-analysis: the effects of gut flora modulation using prebiotics, probiotics and synbiotics on minimal hepatic encephalopathy,” Alimentary Pharmacology and Therapeutics, vol. 33, no. 6, pp. 662–671, 2011.
[45]  M. Luo, L. Li, C. Lu, and W. Cao, “Clinical efficacy and safety of lactulose for minimal hepatic encephalopathy: a meta-analysis,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 12, pp. 1250–1257, 2011.
[46]  P. Sharma, B. C. Sharma, A. Agrawal, et al., “Primary prophylaxis of overt hepatic encephalopathy in patients with cirrhosis: an open labeled randomized controlled trial of lactulose versus no lactulose,” Journal of Gastroenterology and Hepatology, vol. 27, no. 8, pp. 1329–1335, 2012.
[47]  Q. Jiang, X. H. Jiang, M. H. Zheng, L. Jiang, Y. Chen, and L. Wang, “Rifaximin versus nonabsorbable disaccharides in the management of hepatic encephalopathy: a meta-analysis,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 11, pp. 1064–1070, 2008.
[48]  O. Riggio, G. Balducci, F. Ariosto et al., “Lactitol in prevention of recurrent episodes of hepatic encephalopathy in cirrhotic patients with portal-systemic shunt,” Digestive Diseases and Sciences, vol. 34, no. 6, pp. 823–829, 1989.
[49]  B. C. Sharma, P. Sharma, A. Agrawal, and S. K. Sarin, “Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo,” Gastroenterology, vol. 137, no. 3, pp. 885–891, 2009.
[50]  D. Heredia, J. Teres, N. Orteu, and J. Rodes, “Lactitol vs. lactulose in the treatment of chronic recurrent portal-systemic encephalopathy,” Journal of Hepatology, vol. 7, no. 1, pp. 106–110, 1988.
[51]  A. Agrawal, B. C. Sharma, P. Sharma, et al., “Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy,” The American Journal of Gastroenterology, vol. 107, no. 7, pp. 1043–1050, 2012.
[52]  Lactulose (Lactulose Solution) [Package Insert], Apotex Inc., Ontario, Canada, 2005.
[53]  A. Watanabe, T. Sakai, S. Sato et al., “Clinical efficacy of lactulose in cirrhotic patients with and without subclinical hepatic encephalopathy,” Hepatology, vol. 26, no. 6, pp. 1410–1414, 1997.
[54]  J. Polson and W. M. Lee, “AASLD position paper: the management of acute liver failure,” Hepatology, vol. 41, no. 5, pp. 1179–1197, 2005.
[55]  L. W. Teperman and V. P. Peyregne, “Considerations on the impact of hepatic encephalopathy treatments in the pretransplant setting,” Transplantation, vol. 89, no. 7, pp. 771–778, 2010.
[56]  B. W. Shaw Jr., R. P. Wood, R. D. Gordon, S. Iwatsuki, W. P. Gillquist, and T. E. Starzl, “Influence of selected patient variables and operative blood loss on six-month survival following liver transplantation,” Seminars in Liver Disease, vol. 5, no. 4, pp. 385–393, 1985.
[57]  M. Merli, M. Giusto, F. Gentili et al., “Nutritional status: its influence on the outcome of patients undergoing liver transplantation,” Liver International, vol. 30, no. 2, pp. 208–214, 2010.
[58]  S. A. McCluskey, K. Karkouti, D. N. Wijeysundera et al., “Derivation of a risk index for the prediction of massive blood transfusion in liver transplantation,” Liver Transplantation, vol. 12, no. 11, pp. 1584–1593, 2006.
[59]  G. Fusai, P. Dhaliwal, N. Rolando et al., “Incidence and risk factors for the development of prolonged and severe intrahepatic cholestasis after liver transplantation,” Liver Transplantation, vol. 12, no. 11, pp. 1626–1633, 2006.
[60]  G. N. Ioannou, “Development and validation of a model predicting graft survival after liver transplantation,” Liver Transplantation, vol. 12, no. 11, pp. 1594–1606, 2006.
[61]  S. W. Biggins, H. J. Rodriguez, P. Bacchetti, N. M. Bass, J. P. Roberts, and N. A. Terrault, “Serum sodium predicts mortality in patients listed for liver transplantation,” Hepatology, vol. 41, no. 1, pp. 32–39, 2005.
[62]  H. Selcuk, I. Uruc, M. A. Temel et al., “Factors prognostic of survival in patients awaiting liver transplantation for end-stage liver disease,” Digestive Diseases and Sciences, vol. 52, no. 11, pp. 3217–3223, 2007.
[63]  A. J. Sanchez and J. Aranda-Michel, “Nutrition for the liver transplant patient,” Liver Transplantation, vol. 12, no. 9, pp. 1310–1316, 2006.
[64]  M. Merli, M. Caschera, C. Piat, G. Pinto, M. Diofebi, and O. Riggio, “The effect of lactulose and lactitol administration on fecal fat excretion in patients with liver cirrhosis,” Journal of Clinical Gastroenterology, vol. 15, no. 2, pp. 125–127, 1992.
[65]  K. R. Lawrence and J. A. Klee, “Rifaximin for the treatment of hepatic encephalopathy,” Pharmacotherapy, vol. 28, no. 8, pp. 1019–1032, 2008.
[66]  S. S. Sidhu, O. Goyal, B. P. Mishra, A. Sood, R. S. Chhina, and R. K. Soni, “Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (the RIME trial),” American Journal of Gastroenterology, vol. 106, no. 2, pp. 307–316, 2011.
[67]  J. S. Bajaj, D. M. Heuman, J. B. Wade et al., “Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy,” Gastroenterology, vol. 140, no. 2, pp. 478–487, 2011.
[68]  R. Testa, C. Eftimiadi, and G. S. Sukkar, “A non-absorbable rifamycin for treatment of hepatic encephalopathy,” Drugs under Experimental and Clinical Research, vol. 11, no. 6, pp. 387–392, 1985.
[69]  “FDA approves new use of Xifaxan for patients with liver disease,” 2010, http://www.drugs.com/newdrugs/fda-approves-new-xifaxan-patients-liver-2078.html.
[70]  N. M. Bass, K. D. Mullen, A. Sanyal et al., “Rifaximin treatment in hepatic encephalopathy,” New England Journal of Medicine, vol. 362, no. 12, pp. 1071–1081, 2010.
[71]  A. Sanyal, Z. M. Younossi, N. M. Bass et al., “Randomised clinical trial: rifaximin improves health-related quality of life in cirrhotic patients with hepatic encephalopathy-a double-blind placebo-controlled study,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 8, pp. 853–861, 2011.
[72]  H. Y. Sun, M. Wagener, T. V. Cacciarelli, and N. Singh, “Impact of rifaximin use for hepatic encephalopathy on the risk of early post-transplant infections in liver transplant recipients,” Clinical Transplantation, vol. 26, no. 6, pp. 849–852, 2012.
[73]  E. Strauss, R. Tramote, E. P. S. Silva et al., “Double-blind randomized clinical trial comparing neomycin and placebo in the treatment of exogenous hepatic encephalopathy,” Hepato-Gastroenterology, vol. 39, no. 6, pp. 542–545, 1992.
[74]  H. O. Conn, C. M. Leevy, and Z. R. Vlahcevic, “Comparison of lactulose and neomycin in the treatment of chronic portal systemic encephalopathy. A double blind controlled trial,” Gastroenterology, vol. 72, no. 4, pp. 573–583, 1977.
[75]  C. E. Atterbury, W. C. Maddrey, and H. O. Conn, “Neomycin-sorbitol and lactulose in the treatment of acute portal-systemic encephalopathy. A controlled, double-blind clinical trial,” American Journal of Digestive Diseases, vol. 23, no. 5, pp. 398–406, 1978.
[76]  F. Orlandi, U. Freddara, and M. T. Candelaresi, “Comparison between neomycin and lactulose in 173 patients with hepatic encephalopathy. A randomized clinical study,” Digestive Diseases and Sciences, vol. 26, no. 6, pp. 498–506, 1981.
[77]  D. Festi, G. Mazzella, M. Orsini et al., “Rifaximin in the treatment of chronic hepatic encephalopathy; resultes of a multicenter study of efficacy and safety,” Current Therapeutic Research, vol. 54, no. 5, pp. 598–609, 1993.
[78]  F. Miglio, D. Valpiani, S. R. Rossellini, A. Ferrieri, and N. Canova, “Rifaximin, a non-absorbable rifamycin, for the treatment of hepatic encephalopathy. A double-blind, randomised trial,” Current Medical Research and Opinion, vol. 13, no. 10, pp. 593–601, 1997.
[79]  M. H. Morgan, A. E. Read, and D. C. E. Speller, “Treatment of hepatic encephalopathy with metronidazole,” Gut, vol. 23, no. 1, pp. 1–7, 1982.
[80]  A. T. Blei and J. Córdoba, “Hepatic encephalopathy,” American Journal of Gastroenterology, vol. 96, no. 7, pp. 1968–1976, 2001.
[81]  S. H. Cohen, D. N. Gerding, S. Johnson et al., “Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA),” Infection Control and Hospital Epidemiology, vol. 31, no. 5, pp. 431–455, 2010.
[82]  K. M. Eltawil, M. Laryea, K. Peltekian, and M. Molinari, “Rifaximin vs conventional oral therapy for hepatic encephalopathy: a meta-analysis,” World Journal of Gastroenterology, vol. 18, no. 8, pp. 767–777, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413