全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pretreatment of Small-for-Size Grafts In Vivo by γ-Aminobutyric Acid Receptor Regulation against Oxidative Stress-Induced Injury in Rat Split Orthotopic Liver Transplantation

DOI: 10.1155/2013/149123

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Graft pretreatment to limit postoperative damage has the advantage of overcoming a current issue in liver transplantation (LT). The strategic potential of graft pretreatment in vivo by a specific agonist for γ-aminobutyric acid receptor (GABAR) was investigated in the rat LT model with a small-for-size graft (SFSG). Methods. Recipient rats were divided into three groups according to donor treatments and recipient surgeries: (i) saline and laparotomy, (ii) saline and split orthotopic liver transplantation (SOLT) with 40%-SFSG, and (iii) GABAR agonist and SOLT with 40%-SFSG. Survival was evaluated. Blood and liver samples were collected 6?h after surgery. Immunohistological assessment for apoptotic induction and western blotting for 4-hydroxynonenal, ataxia-telangiectasia mutated kinase (ATM), histone H2AX, phosphatidylinositol-3 kinase (PI3K), Akt, and free radical scavenging enzymes were performed. Results. Pretreatment by GABAR showed improvement in survival, histopathological assessment, and biochemical tests. Apoptotic induction and oxidative stress were observed after SOLT with an SFSG, and this damage was limited by GABAR regulation. GABAR regulation appeared to reduce DNA damage via the ATM/H2AX pathway and to promote cell survival via the PI3K/Akt pathway. Conclusions. Pretreatment in vivo by GABAR regulation improves graft damage after SOLT with an SFSG. This strategy may be advantageous in LT. 1. Introduction Oxygen is required for cell survival. However, oxygen also poses a potential hazard via reactive oxygen species (ROS) and reactive nitrogen species (RNS), with biological and functional alterations of lipids, proteins, and deoxyribonucleic acid (DNA) [1–3]. Therefore, ROS/RNS have been initially considered as harmful products of the normal aerobic metabolism. The control of ROS/RNS production plays physiological roles, especially, in regulating cell signaling to involve cell proliferation, differentiation, and apoptosis [1–3]. Oxidative stress (OS) mediated by free radicals is defined as an imbalance between the production of ROS/RNS and the antioxidant capacity of the cell [1–3]. These antioxidants ensure a defense against ROS/RNS-induced OS [2]. The predominant inhibitory neurotransmitter in the brain is γ-aminobutyric acid (GABA), and almost all researchers have focused on GABA or the regulation of GABA receptor (GABAR) in the brain [4–8]. Currently, GABA is considered to be a multifunctional molecule with various physiological effects throughout the body [9, 10]. In the brain, many researchers have found that the regulation

References

[1]  D. A. Castroviejo, L. C. Lopez, G. Escames, A. Lopez, J. A. Garcia, and R. J. Reiter, “Melatonin-mitochondria interplay in health and disease,” Current Topics in Medicinal Chemistry, vol. 11, pp. 221–240, 2011.
[2]  N. Ghosh, R. Ghosh, and S. C. Mandal, “Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease,” Free Radical Research, vol. 45, no. 8, pp. 888–905, 2011.
[3]  B. Turan, “Role of antioxidants in redox regulation of diabetic cardiovascular complications,” Current Pharmaceutical Biotechnology, vol. 11, no. 8, pp. 819–836, 2010.
[4]  M. E. Pamenter, D. W. Hogg, J. Ormond, D. S. Shin, M. A. Woodin, and L. T. Buck, “Endogenous GAB and GAB receptor-mediated electrical suppression is critical to neuronal anoxia tolerance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 27, pp. 11274–11279, 2011.
[5]  M. And?ng, J. Hjerling-Leffler, A. Moliner et al., “Histone H2AX-dependent GAB receptor regulation of stem cell proliferation,” Nature, vol. 451, no. 7177, pp. 460–464, 2008.
[6]  J. M. Ferreira, A. L. Burnett, and G. A. Rameau, “Activity-dependent regulation of surface glucose transporter-3,” The Journal of Neuroscience, vol. 31, no. 6, pp. 1991–1999, 2011.
[7]  Y. Hirooka, T. Kishi, K. Sakai, A. Takeshita, and K. Sunagawa, “Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 300, no. 4, pp. R818–R826, 2011.
[8]  S. Kurt, J. M. Crook, F. W. Ohl, H. Scheich, and H. Schulze, “Differential effects of iontophoretic in vivo application of the GABA A-antagonists bicuculline and gabazine in sensory cortex,” Hearing Research, vol. 212, no. 1-2, pp. 224–235, 2006.
[9]  Y. Gong, M. Zhang, L. Cui, and G. Y. Minuk, “Sequence and chromosomal assignment of a human novel cDNA: similarity to gamma-aminobutyric acid transporter,” Canadian Journal of Physiology and Pharmacology, vol. 79, no. 12, pp. 977–984, 2001.
[10]  T. Norikura, A. Kojima-Yuasa, D. O. Kennedy, and I. Matsui-Yuasa, “Protective effect of gamma-aminobutyric acid (GABA) against cytotoxicity of ethanol in isolated rat hepatocytes involves modulations in cellular polyamine levels,” Amino Acids, vol. 32, no. 3, pp. 419–423, 2007.
[11]  R. N. Fernando, B. Eleuteri, S. Abdelhady, A. Nussenzweig, M. And?ng, and P. Ernfors, “Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5837–5842, 2011.
[12]  C. E. Irarrazabal, J. C. Liu, M. S. Burg, and J. D. Ferraris, “ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8809–8814, 2004.
[13]  J. Xu, C. Li, X. Yin, and G. Zhang, “Additive neuroprotection of GABA A and GABA B receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade,” Neuropharmacology, vol. 54, no. 7, pp. 1029–1040, 2008.
[14]  J. E. Lee, J. S. Kang, Y. Ki et al., “Akt/GSK3β signaling is involved in fipronil-induced apoptotic cell death of human neuroblastoma SH-SY5Y cells,” Toxicology Letters, vol. 202, no. 2, pp. 133–141, 2011.
[15]  S. Tejada, C. Roca, A. Sureda, R. V. Rial, A. Gamundí, and S. Esteban, “Antioxidant response analysis in the brain after pilocarpine treatments,” Brain Research Bulletin, vol. 69, no. 5, pp. 587–592, 2006.
[16]  J. Zhou, Y. Li, G. Yan et al., “Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress,” Neurotoxicity Research, vol. 20, no. 4, pp. 334–342, 2011.
[17]  M. P. Biju, S. Pyroja, N. V. Rajeshkumar, and C. S. Paulose, “Hepatic GAB receptor functional regulation during rat liver cell proliferation,” Hepatology Research, vol. 21, no. 2, pp. 136–146, 2001.
[18]  J. Lemasters, H. Bunzendahl, and R. Thurman, “Preservation of the liver,” in Transplantation of the Liver, W. Maddrey and M. Sorrell, Eds., pp. 297–321, Appleton & Lange, East Norwalk, Conn, USA, 2nd edition, 1995.
[19]  H. B. Abdennebi, M. A. Zaoualí, I. Alfany-Fernandez, D. Tabka, and J. Roselló-Catafau, “How to protect liver graft with nitric oxide,” World Journal of Gastroenterology, vol. 17, no. 24, pp. 2879–2889, 2011.
[20]  Y. Ogura, T. Hori, W. M. El Moghazy et al., “Portal pressure <15?mm?Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before,” Liver Transplantation, vol. 16, no. 6, pp. 718–728, 2010.
[21]  F. Wang, K. Pan, S. Chu et al., “Preoperative estimation of the liver graft weight in adult right lobe living donor liver transplantation using maximal portal vein diameters,” Liver Transplantation, vol. 17, no. 4, pp. 373–380, 2011.
[22]  S. He, C. Atkinson, F. Qiao, K. Cianflone, X. Chen, and S. Tomlinson, “A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2304–2316, 2009.
[23]  J. Wu, Q. Tang, J. Shen et al., “Comparative proteome profile during the early period of small-for-size liver transplantation in rats revealed the protective role of Prdx5,” Journal of Hepatology, vol. 53, no. 1, pp. 73–83, 2010.
[24]  T. Hori, S. Uemoto, L. B. Gardner, L. Sibulesky, Y. Ogura, and J. H. Nguyen, “Left-sided grafts for living-donor liver transplantation and split grafts for deceased-donor liver transplantation: their impact on long-term survival,” Clinics and Research in Hepatology and Gastroenterology, vol. 36, no. 1, pp. 47–52, 2012.
[25]  R. W. Busuttil and J. A. Goss, “Split liver transplantation,” Annals of Surgery, vol. 229, no. 3, pp. 313–321, 1999.
[26]  T. Hori, L. B. Gardner, T. Hata, et al., “Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat,” Annals of Transplantation, vol. 18, pp. 299–313, 2013.
[27]  L. B. Gardner, T. Hori, F. Chen, et al., “Effect of specific activation of γ-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy,” Hepatology Research, vol. 42, pp. 1131–1140, 2012.
[28]  T. Hori, L. B. Gardner, F. Chen, et al., “Liver graft pretreated in vivo or ex vivo by γ-aminobutyric acid receptor regulation,” Journal of Surgical Research, vol. 182, pp. 166–175, 2013.
[29]  T. Hori, J. H. Nguyen, X. Zhao et al., “Comprehensive and innovative techniques for liver transplantation in rats: a surgical guide,” World Journal of Gastroenterology, vol. 16, no. 25, pp. 3120–3132, 2010.
[30]  T. Hori, S. Uemoto, X. Zhao et al., “Surgical guide including innovative techniques for orthotopic liver transplantation in the rat: key techniques and pitfalls in whole and split liver grafts,” Annals of Gastroenterology, vol. 23, no. 4, pp. 270–295, 2010.
[31]  S. Padrissa-Altés, M. A. Zaouali, R. Franco-Gou et al., “Matrix metalloproteinase 2 in reduced-size liver transplantation: beyond the matrix,” American Journal of Transplantation, vol. 10, no. 5, pp. 1167–1177, 2010.
[32]  Z. Y. Ma, J. M. Qian, X. H. Rui et al., “Inhibition of matrix metalloproteinase-9 attenuates acute small-for-size liver graft injury in rats,” American Journal of Transplantation, vol. 10, no. 4, pp. 784–795, 2010.
[33]  V. Defamie, M. Laurens, D. Patrono et al., “Matrix metalloproteinase inhibition protects rat livers from prolonged cold ischemia-warm reperfusion injury,” Hepatology, vol. 47, no. 1, pp. 177–185, 2008.
[34]  T. Iida, S. Yagi, K. Taniguchi et al., “Significance of CT attenuation value in liver grafts following right lobe living-donor liver transplantation,” American Journal of Transplantation, vol. 5, no. 5, pp. 1076–1084, 2005.
[35]  T. Hori, T. Iida, S. Yagi et al., “K1CGvalue, a reliable real-time estimator of graft function, accurately predicts outcomes in adult living-donor liver transplantation,” Liver Transplantation, vol. 12, no. 4, pp. 605–613, 2006.
[36]  H. Rehman, H. D. Connor, V. K. Ramshesh et al., “Ischemic preconditioning prevents free radical production and mitochondrial depolarization in small-for-size rat liver grafts,” Transplantation, vol. 85, no. 9, pp. 1322–1331, 2008.
[37]  Z. Zhong, H. D. Connor, M. Froh et al., “Free radical-dependent dysfunction of small-for-size rat liver grafts: prevention by plant polyphenols,” Gastroenterology, vol. 129, no. 2, pp. 652–664, 2005.
[38]  K. Man, S. Fan, C. Lo et al., “Graft injury in relation to graft size in right lobe live donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression,” Annals of Surgery, vol. 237, no. 2, pp. 256–264, 2003.
[39]  Y. C. Awasthi, R. Sharma, A. Sharma et al., “Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death,” Free Radical Biology and Medicine, vol. 45, no. 2, pp. 111–118, 2008.
[40]  G. Voulgaridou, I. Anestopoulos, R. Franco, M. I. Panayiotidis, and A. Pappa, “DNA damage induced by endogenous aldehydes: current state of knowledge,” Mutation Research, vol. 711, no. 1-2, pp. 13–27, 2011.
[41]  J. Kim and P. K. Y. Wong, “Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling,” Stem Cells, vol. 27, no. 8, pp. 1987–1998, 2009.
[42]  J. Yuan, R. Adamski, and J. Chen, “Focus on histone variant H2AX: to be or not to be,” FEBS Letters, vol. 584, no. 17, pp. 3717–3724, 2010.
[43]  E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” The Journal of Biological Chemistry, vol. 273, no. 10, pp. 5858–5868, 1998.
[44]  S. Burma, B. P. Chen, M. Murphy, A. Kurimasa, and D. J. Chen, “ATM phosphorylates histone H2AX in response to DNA Double-strand breaks,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 42462–42467, 2001.
[45]  E. P. Rogakou, C. Boon, C. Redon, and W. M. Bonner, “Megabase chromatin domains involved in DNA double-strand breaks in vivo,” Journal of Cell Biology, vol. 146, no. 5, pp. 905–916, 1999.
[46]  S. Maruyama, R. Shibata, K. Ohashi et al., “Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism,” The Journal of Biological Chemistry, vol. 286, no. 37, pp. 32790–32800, 2011.
[47]  Y. Sánchez, D. Amrán, E. de Blas, and P. Aller, “Regulation of genistein-induced differentiation in human acute myeloid leukaemia cells (HL60, NB4). Protein kinase modulation and reactive oxygen species generation,” Biochemical Pharmacology, vol. 77, no. 3, pp. 384–396, 2009.
[48]  T. F. Franke, D. R. Kaplan, and L. C. Cantley, “PI3K: downstream AKTion blocks apoptosis,” Cell, vol. 88, no. 4, pp. 435–437, 1997.
[49]  B. M. Burgering and P. J. Coffer, “Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction,” Nature, vol. 376, no. 6541, pp. 599–602, 1995.
[50]  T. F. Franke, S.-I. Yang, T. O. Chan et al., “The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase,” Cell, vol. 81, no. 5, pp. 727–736, 1995.
[51]  D. Kim and J. Chung, “Akt: versatile mediator of cell survival and beyond,” Journal of Biochemistry and Molecular Biology, vol. 35, no. 1, pp. 106–115, 2002.
[52]  S. R. Datta, H. Dudek, T. Xu et al., “Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery,” Cell, vol. 91, no. 2, pp. 231–241, 1997.
[53]  A. Khalil, R. N. Morgan, B. R. Adams et al., “ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks,” Cell Cycle, vol. 10, no. 3, pp. 481–491, 2011.
[54]  C. Dal Ponte, E. Alchera, A. Follenzi et al., “Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury,” Liver Transplantation, vol. 17, no. 4, pp. 474–482, 2011.
[55]  S. Haga, M. Ozaki, H. Inoue et al., “The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation,” Hepatology, vol. 49, no. 1, pp. 204–214, 2009.
[56]  D. S. A. Majid and L. Kopkan, “Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 9, pp. 946–952, 2007.
[57]  G. Wright, V. Reichenbecher, T. Green, G. L. Wright, and S. Wang, “Paraquat inhibits the processing of human manganese-dependent superoxide dismutase by Sf-9 insect cell mitochondria,” Experimental Cell Research, vol. 234, no. 1, pp. 78–84, 1997.
[58]  N. Maulik and D. K. Das, “Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions,” Biochimica et Biophysica Acta, vol. 1780, pp. 1368–1382, 2008.
[59]  T. Cesetti, T. Fila, K. Obernier et al., “GAB receptor signaling induces osmotic swelling and cell cycle activation of neonatal prominin+precursors,” Stem Cells, vol. 29, no. 2, pp. 307–319, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413