全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Demonstration of Hepatitis C Virus RNA with In Situ Hybridization Employing a Locked Nucleic Acid Probe in Humanized Liver of Infected Chimeric Mice and in Needle-Biopsied Human Liver

DOI: 10.1155/2013/249535

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. In situ hybridization (ISH) with high sensitivity has been requested to demonstrate hepatitis C virus (HCV) RNA in formalin-fixed, paraffin-embedded (FFPE) sections of the liver. Methods. ISH employing a locked-nucleic-acid- (LNA-)modified oligonucleotide probe and biotin-free catalyzed signal amplification system (CSAII) was applied to HCV-RNA detection in the liver tissue. Nested reverse-transcription polymerase chain reaction (RT-PCR) was performed for HCV genotyping using total RNA extracted from FFPE sections. The target tissues included FFPE tissue sections of humanized livers in HCV-infected chimeric mice (HCV genotypes 1a, 1b, and 2a and noninfected) and of needle-biopsied livers from HCV-infected patients. Results. HCV-RNA was demonstrated with the ISH technique in HCV-infected liver tissues from both chimeric mice and 9 (82%) of 11 patients with HCV infection. The HCV signals were sensitive to RNase. Nested RT-PCR confirmed the genotype in 8 (73%) of 11 livers (type 1b: 6 lesions and type 2a: 2 lesions). HCV-RNA was not identified in chronic hepatitis B lesions, fatty liver, autoimmune hepatitis, and hepatocellular carcinoma. Conclusion. ISH using the LNA-modified oligonucleotide probe and CSAII was applicable to detecting HCV-RNA in routinely prepared FFPE liver specimens. 1. Introduction Hepatitis C virus (HCV) is a single-stranded RNA virus, a member of the Flaviviridae family. Since the first identification of the HCV genome by Choo et al. [1], HCV study has progressed mainly in the field of HCV functional analysis and therapeutic implications. Because of low viral levels in the serum, the diagnosis of HCV infection has been made with a branched chain DNA signal amplification assay and reverse-transcription polymerase chain reaction (RT-PCR) [2–4]. The sensitivity of HCV detection in the serum thus became reproducible and clinically relevant. Pathologists are often requested to detect viral pathogens within the routinely prepared biopsy tissue samples, and therefore simple and reliable histochemical techniques are needed. Techniques for visualizing HCV localization within diseased hepatocytes have also been developed. Reports have described the detection of HCV in human liver tissue by using immunohistochemistry and in situ hybridization (ISH) [4–14], as well as by in situ RT-PCR [4, 6, 15–20]. At the moment, HCV detection with immunohistochemistry and ISH is not yet reproducible enough, we believe. In situ RT-PCR may demonstrate highly sensitive signals, but with concomitant increase of false positivity. Reliable histochemical

References

[1]  Q.-L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton, “Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome,” Science, vol. 244, no. 4902, pp. 359–362, 1989.
[2]  A. M. Majid and D. R. Gretch, “Current and future hepatitis C virus diagnostic testing: problems and advancements,” Microbes and Infection, vol. 4, no. 12, pp. 1227–1236, 2002.
[3]  L. Muratori, “In situ reverse transcriptase-polymerase chain reaction: an innovative tool for hepatitis C virus RNA detection and localisation, and for quantification of infected cells,” European Journal of Histochemistry, vol. 42, no. 2, pp. 133–136, 1998.
[4]  P. Komminoth, V. Adams, A. A. Long et al., “Evaluation of methods for hepatitis C virus detection in archival liver biopsies. Comparison of histology, immunohistochemistry, in-situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR) and in-situ RT-PCR,” Pathology Research and Practice, vol. 190, no. 11, pp. 1017–1025, 1994.
[5]  H. S. Carvalho, M. L. Baptista, M. A. Pinto et al., “Detection of hepatitis C virus RNA by in situ hybridization in paraformaldehyde fixed biopsies,” Memorias do Instituto Oswaldo Cruz, vol. 100, no. 3, pp. 269–272, 2005.
[6]  X. Qian, R. B. Guerrero, T. B. Plummer, V. F. Alves, and R. V. Lloyd, “Detection of hepatitis C virus RNA in formalin-fixed paraffin-embedded sections with digoxigenin-labeled cRNA probes,” Diagnostic Molecular Pathology, vol. 13, no. 1, pp. 9–14, 2004.
[7]  S. de Lucas, J. Bartolomé, E. Rodríguez-I?igo et al., “Distribution of hepatitis C virus infection in liver biopsies from children and adults with chronic hepatitis C,” Journal of Medical Virology, vol. 64, no. 1, pp. 1–5, 2001.
[8]  M. Chang, A. P. Marquardt, B. L. Wood et al., “in situ distribution of hepatitis C virus replicative-intermediate RNA in hepatic tissue and its correlation with liver disease,” Journal of Virology, vol. 74, no. 2, pp. 944–955, 2000.
[9]  V. Agnello, G. ábel, G. B. Knight, and E. Muchmore, “Detection of widespread hepatocyte infection in chronic hepatitis C,” Hepatology, vol. 28, no. 2, pp. 573–584, 1998.
[10]  D. Sansonno, V. Cornacchiulo, V. Racanelli, and F. Dammacco, “In situ simultaneous detection of hepatitis C virus RNA and hepatitis C virus-related antigens in hepatocellular carcinoma,” Cancer, vol. 80, no. 1, pp. 22–33, 1997.
[11]  S. W. Cho, S. G. Hwang, D. C. Han et al., “In situ detection of hepatitis C virus RNA in liver tissue using a digoxigenin-labeled probe created during a polymerase chain reaction,” Journal of Medical Virology, vol. 48, no. 3, pp. 227–233, 1996.
[12]  L. Tang, Y. Tanaka, N. Enomoto, F. Marumo, and C. Sato, “Detection of hepatitis C virus RNA in hepatocellular carcinoma by in situ hybridization,” Cancer, vol. 76, no. 11, pp. 2211–2216, 1995.
[13]  M. Gastaldi, A. Massacrier, R. Planells et al., “Detection by in situ hybridization of hepatitis C virus positive and negative RNA strands using digoxigenin-labeled cRNA probes in human liver cells,” Journal of Hepatology, vol. 23, no. 5, pp. 509–518, 1995.
[14]  Y. Tanaka, N. Enomoto, S. Kojima et al., “Detection of hepatitis C virus RNA in the liver by in situ hybridization,” Liver, vol. 13, no. 4, pp. 203–208, 1993.
[15]  H. Nuriya, K. Inoue, T. Tanaka et al., “Detection of hepatitis B and C viruses in almost all hepatocytes by modified PCR-based in situ hybridization,” Journal of Clinical Microbiology, vol. 48, no. 11, pp. 3843–3851, 2010.
[16]  A. J. Alzahrani, P. J. Vallely, and R. F. T. McMahon, “Development of a novel nested in situ PCR-ISH method for detection of hepatitis C virus RNA in liver tissue,” Journal of Virological Methods, vol. 99, no. 1-2, pp. 53–61, 2002.
[17]  P. Biagini, L. Benkoel, F. Dodero et al., “Hepatitis C virus RNA detection by in situ RT-PCR in formalin-fixed paraffin-embedded liver tissue. Comparison with serum and tissue results,” Cellular and Molecular Biology, vol. 47, pp. OL167–OL171, 2001.
[18]  D. Bettinger, C. Mougin, B. Fouqué, B. Kantelip, J. P. Miguet, and M. Lab, “Direct in situ reverse transcriptase-linked polymerase chain reaction with biotinylated primers for the detection of hepatitis C virus RNA in liver biopsies,” Journal of Clinical Virology, vol. 12, no. 3, pp. 233–241, 1999.
[19]  F. M. Walker, M. Dazza, M. Dauge et al., “Detection and localization by in situ molecular biology techniques and immunohistochemistry of hepatitis C virus in livers of chronically infected patients,” Journal of Histochemistry and Cytochemistry, vol. 46, no. 5, pp. 653–660, 1998.
[20]  G. K. K. Lau, J. W. S. Fang, P. C. Wu, G. L. Davis, and J. Y. N. Lau, “Detection of hepatitis C virus genome in formalin-fixed paraffin-embedded liver tissue by in situ reverse transcription polymerase chain reaction,” Journal of Medical Virology, vol. 44, no. 4, pp. 406–409, 1994.
[21]  C. Tateno, Y. Yoshizane, N. Saito et al., “Near completely humanized liver in mice shows human-type metabolic responses to drugs,” American Journal of Pathology, vol. 165, no. 3, pp. 901–912, 2004.
[22]  D. F. Mercer, D. E. Schiller, J. F. Elliott et al., “Hepatitis C virus replication in mice with chimeric human livers,” Nature Medicine, vol. 7, no. 8, pp. 927–933, 2001.
[23]  F. Ichida, “Histological grading criteria of chronic hepatitis: new Inuyama classification,” in Proceedings of the 19th Inuyama Symposium, pp. 183–188, Chugai Igaku, 1996.
[24]  K. Shiogama, H. Teramoto, Y. Morita et al., “Hepatitis C virus infection in a Japanese leprosy sanatorium for the past 67 years,” Journal of Medical Virology, vol. 82, no. 4, pp. 556–561, 2010.
[25]  L. A. Neely, S. Patel, J. Garver et al., “A single-molecule method for the quantitation of microRNA gene expression,” Nature Methods, vol. 3, no. 1, pp. 41–46, 2006.
[26]  W. P. Kloosterman, E. Wienholds, E. de Bruijn, S. Kauppinen, and R. H. A. Plasterk, “In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes,” Nature Methods, vol. 3, no. 1, pp. 27–29, 2006.
[27]  K. Kubota, A. Ohashi, H. Imachi, and H. Harada, “Improved in situ hybridization efficiency with locked-nucleic-acid- incorporated DNA probes,” Applied and Environmental Microbiology, vol. 72, no. 8, pp. 5311–5317, 2006.
[28]  R. Thomsen, P. S. Nielsen, and T. H. Jensen, “Dramatically improved RNA in situ hybridization signals using LNA-modified probes,” RNA, vol. 11, no. 11, pp. 1745–1748, 2005.
[29]  A. Válóczi, C. Hornyik, N. Varga, J. Burgyán, S. Kauppinen, and Z. Havelda, “Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes,” Nucleic Acids Research, vol. 32, no. 22, article e175, 2004.
[30]  K. Sakurai, C. Furukawa, T. Haraguchi et al., “MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers,” Cancer Research, vol. 71, no. 5, pp. 1680–1689, 2011.
[31]  N. Yamamichi, R. Shimomura, K. Inada et al., “Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development,” Clinical Cancer Research, vol. 15, no. 12, pp. 4009–4016, 2009.
[32]  P. T. Nelson, D. A. Baldwin, W. P. Kloosterman, S. Kauppinen, R. H. A. Plasterk, and Z. Mourelatos, “RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain,” RNA, vol. 12, no. 2, pp. 187–191, 2006.
[33]  Y. Liang, T. Shilagard, S. Xiao et al., “Visualizing hepatitis C virus infections in human liver by two-photon microscopy,” Gastroenterology, vol. 137, no. 4, pp. 1448–1458, 2009.
[34]  G. Li, K. Li, A. S. Lea et al., “In situ hybridization for the detection of hepatitis C virus RNA in human liver tissue,” Journal of Viral Hepatitis, vol. 20, no. 3, pp. 183–192, 2013.
[35]  T. Tanaka, K. Inoue, Y. Hayashi et al., “Virological significance of low-level hepatitis B virus infection in patients with hepatitis C virus associated liver disease,” Journal of Medical Virology, vol. 72, no. 2, pp. 223–229, 2004.
[36]  D. Revie and S. Z. Salahuddin, “Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence,” Virology Journal, vol. 8, pp. 346–370, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413