全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MR Imaging of Hepatocellular Adenomas and Differential Diagnosis Dilemma

DOI: 10.1155/2013/374170

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatocellular adenomas (HCAs) are currently categorized into distinct genetic and pathologic subtypes as follows: inflammatory hepatocellular adenoma, hepatocyte-nuclear-factor-1-alpha (HNF-1α-mutated) hepatocellular adenoma, and β-catenin-mutated hepatocellular adenomas; the fourth, defined as unclassified subtype, encompasses HCAs without any genetic abnormalities. This classification has accepted management implications due to different risks of haemorrhage and malignant transformation of the four subtypes. Imaging guided biopsy and/or surgical resection very important in obtaining definitive characterization; nevertheless, MRI with intra-extravascular and hepatobiliary (dual phase) agents, is an important tool not only in differential subtypes definition but even in surveillance with early identification of complications and discovery of some signs of HCA malignant degeneration. Inflammation, abnormal rich vascularisation, peliotic areas, and abundant fatty infiltration are pathologic findings differently present in the HCA subtypes and they may be detected by multiparametric MRI approach. Lesion enlargement and heterogeneity of signal intensity and of contrast enhancement are signs to be considered in malignant transformation. The purpose of this paper is to present the state of the art of MRI in the diagnosis of HCA and subtype characterization, with particular regard to morphologic and functional information available with dual phase contrast agents, and to discuss differential diagnosis with the most common benign and malignant lesions mimicking HCAs. 1. Introduction Hepatocellular adenoma (HCA) is a rare benign tumour (incidence of 1/1,000,000) that is mainly found in women of child-bearing age (second most frequent hepatocellular tumor in young women after focal nodular hyperplasia). There is evidence that HCA is strongly related to current and recent (first generation, high dose) oral contraceptives (OC) use. Recent, low-dose OCs appear less strongly, at all, related to HCA [1]. Sometimes tumour regression has been noted after discontinuation of OC. Non-OC-related causes of HCA include familial insulin-dependent diabetes, Fanconi anaemia, glycogen storage diseases, and hormonal stimulation from other sources, for instance, anabolic steroid use by body builders, gynaecological tumours, or pregnancy [2–6]. Small HCA is generally asymptomatic. Right upper abdominal quadrant fullness or discomfort is present in 40% of cases due to mass effect. Typical clinical manifestation is spontaneous rupture or haemorrhage leading to acute abdominal pain

References

[1]  C. La Vecchia and A. Tavani, “Female hormones and benign liver tumours,” Digestive and Liver Disease, vol. 38, no. 8, pp. 535–536, 2006.
[2]  R. L. Prentice, “Epidemiologic data on exogenous hormones and hepatocellular carcinoma and selected other cancers,” Preventive Medicine, vol. 20, no. 1, pp. 38–46, 1991.
[3]  P. Labrune, P. Trioche, I. Duvaltier, P. Chevalier, and M. Odièvre, “Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature,” Journal of Pediatric Gastroenterology and Nutrition, vol. 24, no. 3, pp. 276–279, 1997.
[4]  L. Giannitrapani, M. Soresi, E. La Spada, M. Cervello, N. D'Alessandro, and G. Montalto, “Sex hormones and risk of liver tumor,” Annals of the New York Academy of Sciences, vol. 1089, pp. 228–236, 2006.
[5]  M. S. Cappell, “Hepatic disorders severely affected by pregnancy: medical and obstetric management,” Medical Clinics of North America, vol. 92, no. 4, pp. 739–760, 2008.
[6]  W. O. C. Greaves and B. Bhattacharya, “Hepatic adenomatosis,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 12, pp. 1951–1955, 2008.
[7]  H. Yoshidome, K. M. McMasters, and M. J. Edwards, “Management issues regarding hepatic adenomatosis,” American Surgeon, vol. 65, no. 11, pp. 1070–1076, 1999.
[8]  A. Colli, M. Fraquelli, S. Massironi, A. Colucci, S. Paggi, and D. Conte, “Elective surgery for benign liver tumours,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD005164, 2007.
[9]  P. Bioulac-Sage, S. Rebouissou, C. Thomas et al., “Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry,” Hepatology, vol. 46, no. 3, pp. 740–748, 2007.
[10]  P. Bioulac-Sage, C. Balabaud, and J. Zucman-Rossi, “Subtype classification of hepatocellular adenoma,” Digestive Surgery, vol. 27, no. 1, pp. 39–45, 2010.
[11]  P. Bioulac-Sage, H. Laumonier, G. Couchy et al., “Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience,” Hepatology, vol. 50, no. 2, pp. 481–489, 2009.
[12]  J. Zucman-Rossi, E. Jeannot, J. T. Van Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[13]  M. Lewin, A. Handra-Luca, L. Arrivé et al., “Liver adenomatosis: classification of MR imaging features and comparison with pathologic findings,” Radiology, vol. 241, no. 2, pp. 433–440, 2006.
[14]  H. Laumonier, P. Bioulac-Sage, C. Laurent, J. Zucman-Rossi, C. Balabaud, and H. Trillaud, “Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification,” Hepatology, vol. 48, no. 3, pp. 808–818, 2008.
[15]  V. S. Katabathina, C. O. Menias, A. K. P. Shanbhogue, et al., “Genetics and imaging of hepatocellular adenomas: 2011 update,” Radiographics, vol. 31, pp. 1529–1543, 2011.
[16]  M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. J. Weinmann, “Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths,” Investigative Radiology, vol. 40, no. 11, pp. 715–724, 2005.
[17]  H. J. Kim, B. S. Kim, M. J. Kim, et al., “Enhancement of the liver and pancreas in the hepatic arterial dominant phase: comparison of hepatocyte-specific MRI contrast agents, gadoxetic acid andgadobenate dimeglumine, on 3 and 1.5 tesla MRI in the same patient,” Journal of Magnetic Resonance Imaging, 2012.
[18]  S. Feuerlein, R. T. Gupta, D. T. Boll, and E. M. Merkle, “Hepatocellular MR contrast agents: enhancement characteristics of liver parenchyma and portal vein after administration of gadoxetic acid in comparison to gadobenate dimeglumine,” European Journal of Radiology, vol. 81, no. 9, pp. 2037–2041, 2011.
[19]  M. S. Lee, J. Y. Lee, S. H. Kim et al., “Gadoxetic acid disodium-enhanced magnetic resonance imaging for biliary and vascular evaluations in preoperative living liver donors: comparison with gadobenate dimeglumine-enhanced MRI,” Journal of Magnetic Resonance Imaging, vol. 33, no. 1, pp. 149–159, 2011.
[20]  A. Filippone, A. Blakeborough, J. Breuer et al., “Enhancement of liver parenchyma after injection of hepatocyte-specific MRI contrast media: a comparison of gadoxetic acid and gadobenate dimeglumine,” Journal of Magnetic Resonance Imaging, vol. 31, no. 2, pp. 356–364, 2010.
[21]  T. Denecke, I. G. Steffen, S. Agarwal, et al., “Appearance of hepatocellular adenomas on gadoxetic acid-enhanced MRI,” European Radiology, vol. 22, pp. 1769–1775, 2012.
[22]  P. Bioulac-Sage, H. Laumonier, C. Laurent, J. Zucman-Rossi, and C. Balabaud, “Hepatocellular adenoma: what is new in 2008,” Hepatology International, vol. 2, no. 3, pp. 316–321, 2008.
[23]  V. Paradis, A. Champault, M. Ronot et al., “Telangiectatic adenoma: an entity associated with increased body mass index and inflammation,” Hepatology, vol. 46, no. 1, pp. 140–146, 2007.
[24]  P. Bioulac-Sage, S. Rebouissou, A. Sa Cunha et al., “Clinical, morphologic, and molecular features defining so-called telangiectatic focal nodular hyperplasias of the liver,” Gastroenterology, vol. 128, no. 5, pp. 1211–1218, 2005.
[25]  K. Mohajer, A. Frydrychowicz, J. B. Robbins, et al., “Characterization of hepatic adenoma and focal nodular hyperplasia with gadoxetic acid,” Journal of Magnetic Resonance Imaging, vol. 36, no. 3, pp. 686–696, 2012.
[26]  L. Grazioli, M. P. Bondioni, H. Haradome, et al., “Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis,” Radiology, vol. 262, no. 2, pp. 520–529, 2012.
[27]  P. Bioulac-Sage, J. Frédéric Blanc, S. Rebouissou, C. Balabaud, and J. Zucman-Rossi, “Genotype phenotype classification of hepatocellular adenoma,” World Journal of Gastroenterology, vol. 13, no. 19, pp. 2649–2654, 2007.
[28]  O. Bluteau, E. Jeannot, P. Bioulac-Sage et al., “Bi-allelic inactivation of TCF1 in hepatic adenomas,” Nature Genetics, vol. 32, no. 2, pp. 312–315, 2002.
[29]  M. Kanematsu, S. Goshima, H. Watanabe, et al., “Detection and characterization of focal hepatic lesions with diffusion-weighted MR imaging: a pictorial review,” Abdominal Imaging, 2012.
[30]  F. H. Miller, N. Hammond, A. J. Siddiqi et al., “Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions,” Journal of Magnetic Resonance Imaging, vol. 32, no. 1, pp. 138–147, 2010.
[31]  Y. W. Chen, Y. M. Jeng, S. H. Yeh, and P. J. Chen, “p53 gene and Wnt signaling in benign neoplasms: β-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia,” Hepatology, vol. 36, no. 4, pp. 927–935, 2002.
[32]  O. Farges, N. Ferreira, S. Dokmak, J. Belghiti, P. Bedossa, and V. Paradis, “Changing trends in malignant transformation of hepatocellular adenoma,” Gut, vol. 60, no. 1, pp. 85–89, 2011.
[33]  L. Maillette De Buy Wenniger, V. Terpstra, and U. Beuers, “Focal nodular hyperplasia and hepatic adenoma: epidemiology and pathology,” Digestive Surgery, vol. 27, no. 1, pp. 24–31, 2010.
[34]  K. F. Kreitner, M. Thelen, H. Schild, et al., “Epidemiologische und klinische aspekte der fokalnodularen hyperplasie der leber,” Deutsche Medizinische Wochenschrift, vol. 112, no. 22, pp. 891–896, 1987.
[35]  C. Grieser, I. G. Steffen, D. Seehofer, et al., “Histopathologically confirmed focal nodular hyperplasia of the liver: Gadoxetic acid-enhanced MRI characteristics,” Journal of Magnetic Resonance Imaging, 2012.
[36]  V. Vilgrain, “Focal nodular hyperplasia,” European Journal of Radiology, vol. 58, no. 2, pp. 236–245, 2006.
[37]  S. M. Hussain, T. Terkivatan, P. E. Zondervan et al., “Focal nodular hyperplasia: findings at state-of-the-art MR imaging, US, CT, and pathologic analysis,” Radiographics, vol. 24, no. 1, pp. 3–17, 2004.
[38]  I. R. Wanless, “Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2,500 autopsies and a new classification of benign hepatocellular nodules,” Hepatology, vol. 11, no. 5, pp. 787–797, 1990.
[39]  I. R. Wanless, “Nodular regenerative hyperplasia, dysplasia, and hepatocellular carcinoma,” American Journal of Gastroenterology, vol. 91, no. 5, pp. 836–837, 1996.
[40]  J. T. Ames, M. P. Federle, and K. Chopra, “Distinguishing clinical and imaging features of nodular regenerative hyperplasia and large regenerative nodules of the liver,” Clinical Radiology, vol. 64, no. 12, pp. 1190–1195, 2009.
[41]  G. Morana, L. Grazioli, M. A. Kirchin et al., “Solid hypervascular liver lesions: accurate identification of true benign lesions on enhanced dynamic and hepatobiliary phase magnetic resonance imaging after gadobenate dimeglumine administration,” Investigative Radiology, vol. 46, no. 4, pp. 225–239, 2011.
[42]  T. Ichikawa, M. P. Federle, L. Grazioli, J. Madariaga, M. Nalesnik, and W. Marsh, “Fibrolamellar hepatocellular carcinoma: imaging and pathologic findings in 31 recent cases,” Radiology, vol. 213, no. 2, pp. 352–361, 1999.
[43]  T. Ichikawa, M. P. Federle, L. Grazioli, and W. Marsh, “Fibrolamellar hepatocellular carcinoma: pre- and posttherapy evaluation with CT and MR imaging,” Radiology, vol. 217, no. 1, pp. 145–151, 2000.
[44]  J. T. Campos, C. B. Sirlin, and J. Y. Choi, “Focal hepatic lesions in Gd-GD-EOB-DTPA enhanced MRI: the atlas,” Insights Imaging, vol. 3, no. 5, pp. 451–474, 2012.
[45]  C. Sempoux, G. Jibara, S. C. Ward et al., “Intrahepatic cholangiocarcinoma: new insights in pathology,” Seminars in Liver Disease, vol. 31, no. 1, pp. 49–60, 2011.
[46]  N. Guedj, P. Bedossa, and V. Paradis, “Anatomopathologie des cholangiocarcinomes,” Annales de Pathologie, vol. 30, no. 6, pp. 455–463, 2010.
[47]  Y. Maetani, K. Itoh, C. Watanabe et al., “MR imaging of intrahepatic cholangiocarcinoma with pathologic correlation,” American Journal of Roentgenology, vol. 176, no. 6, pp. 1499–1507, 2001.
[48]  R. Manfredi, B. Barbaro, G. Masselli, A. Vecchioli, and P. Marano, “Magnetic resonance imaging of cholangiocarcinoma,” Seminars in Liver Disease, vol. 24, no. 2, pp. 155–164, 2004.
[49]  E. S. Zafrani and P. Gaulard, “Primary lymphoma of the liver,” Liver, vol. 13, no. 2, pp. 57–61, 1993.
[50]  J. Ryan, D. J. Straus, C. Lange et al., “Primary lymphoma of the liver,” Cancer, vol. 61, no. 2, pp. 370–375, 1988.
[51]  P. Soyer, B. Van Beers, C. Grandin, J. Pringot, and M. Levesque, “Primary lymphoma of the liver: MR findings,” European Journal of Radiology, vol. 16, no. 3, pp. 209–212, 1993.
[52]  I. Ihse, B. Persson, and S. Tibblin, “Neuroendocrine metastases of the liver,” World Journal of Surgery, vol. 19, no. 1, pp. 76–82, 1995.
[53]  D. Hayashi, J. N. Tkacz, S. Hammond et al., “Gastroenteropancreatic neuroendocrine tumors: multimodality imaging features with pathological correlation,” Japanese Journal of Radiology, vol. 29, no. 2, pp. 85–91, 2011.
[54]  S. Namasivayam, D. R. Martin, and S. Saini, “Imaging of liver metastases: MRI,” Cancer Imaging, vol. 7, no. 1, pp. 2–9, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413