全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Histological and Immunohistochemical Revision of Hepatocellular Adenomas: A Learning Experience

DOI: 10.1155/2013/398308

Full-Text   Cite this paper   Add to My Lib

Abstract:

Light has been shed on the genotype/phenotype correlation in hepatocellular adenoma (HCA) recognizing HNF1α-inactivated HCA (H-HCA), inflammatory HCA (IHCA), and β-catenin-activated HCA (b-HCA). We reviewed retrospectively our surgical HCA series to learn how to recognize the different subtypes histopathologically and how to interpret adequately their immunohistochemical staining. From January 1992 to January 2012, 37 patients underwent surgical resection for HCA in our institution. Nine had H-HCA (25%) characterized by steatosis and loss of L-FABP expression; 20 had IHCA (55.5%) showing CRP and/or SAA expression, sinusoidal dilatation, and variable inflammation; and 1 patient had both H-HCA and IHCA. In 5 patients (14%), b-HCA with GS and β-catenin nuclear positivity was diagnosed, two already with hepatocellular carcinoma. Two cases (5.5%) remained unclassified. One of the b-HCA showed also the H-HCA histological and immunohistochemical characteristics suggesting a subgroup of β-catenin-activated/HNF1α-inactivated HCA, another b-HCA exhibited the IHCA histological and immunohistochemical characteristics suggesting a subgroup of β-catenin-activated/inflammatory HCA. Interestingly, three patients had underlying vascular abnormalities. Using the recently published criteria enabled us to classify histopathologically our retrospective HCA surgical series with accurate recognition of b-HCA for which we confirm the higher risk of malignant transformation. We also underlined the association between HCA and vascular abnormalities. 1. Introduction Hepatocellular adenomas (HCA) are rare benign tumors most frequently observed in women on oral contraception [1, 2]. HCA can occur in men on anabolic steroids [3] or be associated with underlying metabolic diseases such as glycogen storage disease [4]. Some associations have also been described with congenital vascular abnormalities of the liver [5–8]. The existence of four different categories of HCA was recently recognized, and the clinical relevance of subtyping these liver lesions according to histological and immunohistochemical features and to molecular alterations was demonstrated [9–15]. HNF1α-inactivated HCA (H-HCA) are associated with HNF1α inhibiting mutations leading to the loss of expression of liver fatty acid binding protein (L-FABP) within the lesion as compared with the surrounding liver parenchyma by immunohistochemistry (IHC). These HCA are histologically associated with marked liver steatosis and do not show cytological abnormalities. The second group, the more frequent, is the inflammatory type of

References

[1]  H. A. Edmondson, B. Henderson, and B. Benton, “Liver cell adenomas associated with use of oral contraceptives,” The New England Journal of Medicine, vol. 294, no. 9, pp. 470–472, 1976.
[2]  L. Giannitrapani, M. Soresi, E. La Spada, M. Cervello, N. D'Alessandro, and G. Montalto, “Sex hormones and risk of liver tumor,” Annals of the New York Academy of Sciences, vol. 1089, pp. 228–236, 2006.
[3]  K. L. S?e, M. Soe, and C. Gluud, “Liver pathology associated with the use of anabolic-androgenic steroids,” Liver, vol. 12, no. 2, pp. 73–79, 1992.
[4]  S. Sakellariou, H. Al-Hussaini, A. Scalori et al., “Hepatocellular adenoma in glycogen storage disorder type I: a clinicopathological and molecular study,” Histopathology, vol. 60, no. 6 B, pp. E58–E65, 2012.
[5]  I. R. Wanless, J. S. Lentz, and E. A. Roberts, “Partial nodular transformation of liver in an adult with persistent ductus venosus. Review with hypothesis on pathogenesis,” Archives of Pathology and Laboratory Medicine, vol. 109, no. 5, pp. 427–432, 1985.
[6]  R. A. Morotti, M. Killackey, B. L. Shneider, A. Repucci, S. Emre, and S. N. Thung, “Hepatocellular carcinoma and congenital absence of the portal vein in a child receiving growth hormone therapy for Turner syndrome,” Seminars in Liver Disease, vol. 27, no. 4, pp. 427–431, 2007.
[7]  A. Handra-Luca, V. Paradis, V. Vilgrain et al., “Multiple mixed adenoma-focal nodular hyperplasia of the liver associated with spontaneous intrahepatic porto-systemic shunt: a new type of vascular malformation associated with the multiple focal nodular hyperplasia syndrome?” Histopathology, vol. 48, no. 3, pp. 309–311, 2006.
[8]  J. Koizumi, T. Yamashita, S. Dowaki et al., “Hepatobiliary and pancreatic: hepatic adenoma, focal nodular hyperplasia and congenital absence of the portal vein,” Journal of Gastroenterology and Hepatology, vol. 21, no. 3, p. 619, 2006.
[9]  O. Bluteau, E. Jeannot, P. Bioulac-Sage et al., “Bi-allelic inactivation of TCF1 in hepatic adenomas,” Nature Genetics, vol. 32, no. 2, pp. 312–315, 2002.
[10]  Y. W. Chen, Y. M. Jeng, S. H. Yeh, and P. J. Chen, “p53 gene and Wnt signaling in benign neoplasms: β-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia,” Hepatology, vol. 36, no. 4, pp. 927–935, 2002.
[11]  J. Zucman-Rossi, E. Jeannot, J. T. Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[12]  P. Bioulac-Sage, S. Rebouissou, C. Thomas et al., “Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry,” Hepatology, vol. 46, no. 3, pp. 740–748, 2007.
[13]  P. Bioulac-Sage, H. Laumonier, G. Couchy et al., “Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience,” Hepatology, vol. 50, no. 2, pp. 481–489, 2009.
[14]  S. Rebouissou, M. Amessou, G. Couchy et al., “Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours,” Nature, vol. 457, no. 7226, pp. 200–204, 2009.
[15]  P. Bioulac-Sage, G. Cubel, C. Balabaud, and J. Zucman-Rossi, “Revisiting the pathology of resected benign hepatocellular nodules using new immunohistochemical markers,” Seminars in Liver Disease, vol. 31, no. 1, pp. 91–103, 2011.
[16]  J. F. Flejou, J. Barge, and Y. Menu, “Liver adenomatosis. An entity distinct from liver adenoma?” Gastroenterology, vol. 89, no. 5, pp. 1132–1138, 1985.
[17]  S. Dokmak, V. Paradis, V. Vilgrain et al., “A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas,” Gastroenterology, vol. 137, no. 5, pp. 1698–1705, 2009.
[18]  S. M. van Aalten, J. Verheij, T. Terkivatan, R. S. Dwarkasing, R. A. De Man, and J. N. M. Ijzermans, “Validation of a liver adenoma classification system in a tertiary referral centre: implications for clinical practice,” Journal of Hepatology, vol. 55, no. 1, pp. 120–125, 2011.
[19]  P. Bioulac-Sage, C. Balabud, and I. Wanless, “Focal nodular hyperplasia and hepatocellular adenoma,” in Tumors of the Digestive Tract, F. Bosman, F. Carneiro, R. Hruban, and N. D. Theise, Eds., pp. 198–204, World Health Organization, Lyon, France, 2010.
[20]  S. P. S. Monga, “Hepatic adenomas: presumed innocent until proven to be beta-catenin mutated,” Hepatology, vol. 43, no. 3, pp. 401–404, 2006.
[21]  P. Bioulac-Sage, G. Cubel, and C. Balabaud, “Pathological diagnosis of hepatocellular adenoma in clinical practice,” Diagnostic Histopathology, vol. 17, no. 12, pp. 521–529, 2011.
[22]  M. Ronot, S. Bahrami, J. Calderaro et al., “Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification,” Hepatology, vol. 53, no. 4, pp. 1182–1191, 2011.
[23]  S. M. van Aalten, C. D. Witjes, R. A. de Man, J. N. Ijzermans, and T. Terkivatan, “Can a decision-making model be justified in the management of hepatocellular adenoma?” Liver International, vol. 32, pp. 28–37, 2012.
[24]  S. Dardenne, C. Hubert, C. Sempoux et al., “Conservative and operative management of benign solid hepatic tumours: a successful stratified algorithm,” European Journal of Gastroenterology and Hepatology, vol. 22, no. 11, pp. 1337–1344, 2010.
[25]  G. H. Hu, L. G. Shen, J. Yang, J. H. Mei, and Y. F. Zhu, “Insight into congenital absence of the portal vein: is it rare?” World Journal of Gastroenterology, vol. 14, no. 39, pp. 5969–5979, 2008.
[26]  S. Franchi-Abella, S. Branchereau, V. Lambert et al., “Complications of congenital portosystemic shunts in children: therapeutic options and outcomes,” Journal of Pediatric Gastroenterology and Nutrition, vol. 51, no. 3, pp. 322–330, 2010.
[27]  M. Lisovsky, A. Konstas, and J. Misdraji, “Congenital extrahepatic portosystemic shunts (abernethy malformation): a histopathologic evaluation,” The American Journal of Surgical Pathology, vol. 35, no. 9, pp. 1381–1390, 2011.
[28]  T. Ueda, J. Starkey, K. Mori et al., “A pictorial review of benign hepatocellular nodular lesions: comprehensive radiological assessment incorporating the concept of anomalous portal tract syndrome,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 18, no. 3, pp. 386–396, 2011.
[29]  J. F. Hechtman, M. Raoufi, I. Fiel et al., “Hepatocellular carcinoma arising in a pigmented telangiectatic adenoma with nuclear β-catenin and glutamine synthetase positivity: case report and review of the literature,” The American Journal of Surgical Pathology, vol. 35, no. 6, pp. 927–932, 2011.
[30]  N. Hasan, M. Coutts, and B. Portmann, “Pigmented liver cell adenoma in two male patients,” The American Journal of Surgical Pathology, vol. 24, no. 10, pp. 1429–1432, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133