全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changing Epidemiology of Hepatocellular Adenoma in the United States: Review of the Literature

DOI: 10.1155/2013/604860

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatocellular adenoma (HCA) is a benign neoplasm arising from hepatocytes. There is evidence that the inflammatory subtype may be associated with obesity and alcohol use and that men with metabolic syndrome may be at risk for malignant transformation of HCA. We sought to explore the combined experience of US centers as reported in the literature to document the epidemiologic shift in risk factors for HCA formation in the United States, namely, a shift from oral contraceptive pills (OCPs) to an emerging role of obesity as a contributing factor. Methods. Publications reporting HCA in the United States were identified through a PubMed search and a review of the literature. We excluded publications prior to 1970, single case reports, and publications for which there was no data available regarding patient characteristics including OCP use and the number of adenomas. Conclusion. Whereas earlier reports of HCA in the United States described cases exclusively in women exposed to OCPs, there is a trend towards an increase in HCAs reported in men, HCAs in the absence of OCP use, and increased reporting of multiple HCAs. This may be a result of newer OCP formulations and increasing prevalence of obesity. 1. Introduction Hepatocellular adenomas (HCAs) are benign hepatic neoplasms that became widely recognized in the 1960s and 1970s following the introduction of oral contraceptive pills (OCP’s). Recent advances have identified distinct subtypes based on genotypic classification [1]. These types are (1) hepatocyte nuclear factor-1α (HNF-1α)-mutated HCAs (H-HCA), (2) β-catenin-mutated HCAs (b-HCA), (3) inflammatory HCAs (I-HCA) (which harbor mutations involving the interleukin-6 signal transducer), and (4) unclassified. I-HCAs and H-HCAs account for the majority (80%), while b-HCAs comprise about 10%–15% [2]. Ten percent of I-HCAs also demonstrate β-catenin mutation; however, H-HCAs and b-HCAs are mutually exclusive [3]. HCAs appear as unencapsulated tumors that may be solitary or multiple. Adenomatosis, a term used when greater than 10 adenomas are encountered, can be associated with maturity onset diabetes of the young type 3 (MODY3). Histologically, HCAs are characterized by plates of hepatocytes that lack portal tract elements and are separated by sinusoids. Immunohistochemical staining techniques proposed by the Bordeaux group [1] and validated by others [4–6] aid in the classification of HCAs into the different subtypes which are reviewed briefly in the following. H-HCAs result from inactivating mutations in the hepatocyte nuclear factor 1 A (HNF1A) gene.

References

[1]  P. Bioulac-Sage, S. Rebouissou, C. Thomas et al., “Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry,” Hepatology, vol. 46, no. 3, pp. 740–748, 2007.
[2]  J. Zucman-Rossi, E. Jeannot, J. T. van Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[3]  P. Bioulac-Sage, G. Cubel, and C. Balabaud, “Pathological diagnosis of hepatocellular adenoma in clinical practice,” Diagnostic Histopathology, vol. 17, no. 12, pp. 521–529, 2011.
[4]  S. M. van Aalten, J. Verheij, T. Terkivatan, R. S. Dwarkasing, R. A. De Man, and J. N. M. Ijzermans, “Validation of a liver adenoma classification system in a tertiary referral centre: implications for clinical practice,” Journal of Hepatology, vol. 55, no. 1, pp. 120–125, 2011.
[5]  O. Farges, N. Ferreira, S. Dokmak, J. Belghiti, P. Bedossa, and V. Paradis, “Changing trends in malignant transformation of hepatocellular adenoma,” Gut, vol. 60, no. 1, pp. 85–89, 2011.
[6]  M. Sasaki, N. Yoneda, S. Kitamura, Y. Sato, and Y. Nakanuma, “Characterization of hepatocellular adenoma based on the phenotypic classification: the Kanazawa experience,” Hepatology Research, vol. 41, no. 10, pp. 982–988, 2011.
[7]  Y. W. Chen, Y. M. Jeng, S. H. Yeh, and P. J. Chen, “p53 gene and Wnt signaling in benign neoplasms: β-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia,” Hepatology, vol. 36, no. 4 I, pp. 927–935, 2002.
[8]  A. Deodhar, L. A. Brody, A. M. Covey, K. T. Brown, and G. I. Getrajdman, “Bland embolization in the treatment of hepatic adenomas: preliminary experience,” Journal of Vascular and Interventional Radiology, vol. 22, no. 6, pp. 795–799, 2011.
[9]  C. Bunchorntavakul, R. Bahirwani, D. Drazek et al., “Clinical features and natural history of hepatocellular adenomas: the impact of obesity,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 6, pp. 664–674, 2011.
[10]  T. Mounajjed and T.-T. Wu, “Telangiectatic variant of hepatic adenoma: clinicopathologic features and correlation between liver needle biopsy and resection,” American Journal of Surgical Pathology, vol. 35, no. 9, pp. 1356–1363, 2011.
[11]  J. L. Deneve, T. M. Pawlik, S. Cunningham et al., “Liver cell adenoma: a multicenter analysis of risk factors for rupture and malignancy,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 640–648, 2009.
[12]  S. W. Cho, J. W. Marsh, J. Steel et al., “Surgical management of hepatocellular adenoma: take it or leave it?” Annals of Surgical Oncology, vol. 15, no. 10, pp. 2795–2803, 2008.
[13]  C. K. Charny, W. R. Jarnagin, L. H. Schwartz et al., “Management of 155 patients with benign liver tumours,” British Journal of Surgery, vol. 88, no. 6, pp. 808–813, 2001.
[14]  K. R. Reddy, “Benign and Solid tumors of the liver: relationship to sex, age, size of tumors, and outcome,” American Surgeon, vol. 67, no. 2, pp. 173–178, 2001.
[15]  G. T. Ault, S. M. Wren, P. W. Ralls, T. B. Reynolds, and S. C. Stain, “Selective management of hepatic adenomas,” American Surgeon, vol. 62, no. 10, pp. 825–829, 1996.
[16]  D. M. Nagorney, “Benign hepatic tumors: focal nodular hyperplasia and hepatocellular adenoma,” World Journal of Surgery, vol. 19, no. 1, pp. 13–18, 1995.
[17]  V. Paradis, “Benign liver tumors: an update,” Clinics in Liver Disease, vol. 14, no. 4, pp. 719–729, 2010.
[18]  E. T. Mays and W. Christopherson, “Hepatic tumors induced by sex steroids,” Seminars in Liver Disease, vol. 4, no. 2, pp. 147–157, 1984.
[19]  R. Weil III, L. J. Koep, and T. E. Starzl, “Liver resection for hepatic adenoma,” Archives of Surgery, vol. 114, no. 2, pp. 178–180, 1979.
[20]  J. Bourne Rooks, H. W. Ory, and K. G. Ishak, “Epidemiology of hepatocellular adenoma. The role of oral contraceptive use,” Journal of the American Medical Association, vol. 242, no. 7, pp. 644–648, 1979.
[21]  H. A. Edmondson, B. Henderson, and B. Benton, “Liver cell adenomas associated with use of oral contraceptives,” New England Journal of Medicine, vol. 294, no. 9, pp. 470–472, 1976.
[22]  J. A. Ameriks, N. W. Thompson, and C. F. Frey, “Hepatic cell adenomas, spontaneous liver rupture, and oral contraceptives,” Archives of Surgery, vol. 110, no. 5, pp. 548–557, 1975.
[23]  J. K. Baum, F. Holtz, J. J. Bookstein, and E. W. Klein, “Possible association between benign hepatomas and oral contraceptives,” The Lancet, vol. 2, no. 7835, pp. 926–929, 1973.
[24]  D. B. Petitti, “Combination estrogen-progestin oral contraceptives,” New England Journal of Medicine, vol. 349, no. 15, pp. 1443–1450, 2003.
[25]  K. Heinemann, C. Thiel, S. M?hner et al., “Benign gynecological tumors: estimated incidence: results of the German Cohort Study on Women's Health,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 107, no. 1, pp. 78–80, 2003.
[26]  P. Bioulac Sage, S. Taouji, L. Possenti, and C. Balabaud, “Hepatocellular adenoma subtypes: the impact of overweight and obesity,” Liver International, vol. 32, no. 8, pp. 1217–1221, 2012.
[27]  V. Paradis, A. Champault, M. Ronot et al., “Telangiectatic adenoma: an entity associated with increased body mass index and inflammation,” Hepatology, vol. 46, no. 1, pp. 140–146, 2007.
[28]  J. Watkins, C. Balabaud, P. Bioulac-Sage, D. Sharma, and A. Dhillon, “Hepatocellular adenoma in advanced-stage fatty liver disease,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 932–936, 2009.
[29]  E. M. Brunt, M. K. Wolverson, and A. M. Di Bisceglie, “Benign hepatocellular tumors (adenomatosis) in nonalcoholic steatohepatitis: a case report,” Seminars in Liver Disease, vol. 25, no. 2, pp. 230–236, 2005.
[30]  K. H. Lim, S. C. Ward, S. Roayaie et al., “Multiple inflammatory and serum amyloid a positive telangiectatic hepatic adenomas with glycogenated nuclei arising in a background of nonalcoholic steatohepatitis,” Seminars in Liver Disease, vol. 28, no. 4, pp. 434–440, 2008.
[31]  R. Vetel?inen, D. Erdogan, W. De Graaf et al., “Liver adenomatosis: Re-evaluation of aetiology and management,” Liver International, vol. 28, no. 4, pp. 499–508, 2008.
[32]  A. Furlan, D. J. van Der Windt, M. A. Nalesnik et al., “Multiple hepatic adenomas associated with liver steatosis at CT and MRI: a case-control study,” American Journal of Roentgenology, vol. 191, no. 5, pp. 1430–1435, 2008.
[33]  H. Lin, J. van Den Esschert, C. Liu, and T. M. van Gulik, “Systematic review of hepatocellular adenoma in China and other regions,” Journal of Gastroenterology and Hepatology, vol. 26, no. 1, pp. 28–35, 2011.
[34]  K. M. Flegal, M. D. Carroll, R. J. Kuczmarski, and C. L. Johnson, “Overweight and obesity in the United States: prevalence and trends, 1960–1994,” International Journal of Obesity, vol. 22, no. 1, pp. 39–47, 1998.
[35]  K. M. Flegal, D. Carroll, B. K. Kit, and C. L. Ogden, “Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010,” Journal of the American Medical Association, vol. 307, no. 5, pp. 491–497, 2012.
[36]  S. Rebouissou, M. Amessou, G. Couchy et al., “Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours,” Nature, vol. 457, no. 7226, pp. 200–204, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413