全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Surgical Treatment and Survival in Patients with Liver Metastases from Neuroendocrine Tumors: A Meta-Analysis of Observational Studies

DOI: 10.1155/2013/235040

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. The role of hepatic resection in patients with liver metastases from gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is still poorly defined. Therefore, we examined the results obtained with surgical resection and other locoregional or systemic therapies by reviewing the recent literature on this topic. We performed the meta-analysis for comparing surgical resection of hepatic metastases with other treatments. Materials and Methods. In this systematic review and meta-analysis of observational studies, the literature search was undertaken between 1990 and 2012 looking for studies evaluating the different survivals between patients treated with surgical resection of hepatic metastases and with other surgical or nonsurgical therapies. The studies were evaluated for quality, publication bias, and heterogeneity. Pooled hazard ratio (HR) estimates and 95% confidence intervals (CI.95) were calculated using fixed-effects model. Results. We selected six studies in the review, five of which were suitable for meta-analysis. We found a significant longer survival in patients treated with hepatic resection than embolisation HR 0.34 (CI.95 0.21–0.55) or all other nonsurgical treatments HR 0.45 (CI.95 0.34–0.60). Only one study compared surgical resection with liver transplantation and meta-analysis was not feasible. Conclusions. Our meta-analysis provides evidence supporting the hypothesis that hepatic resection increases overall survival in patients with liver metastases from GEP-NETs. Further randomized clinical trials are needed to confirm these findings and it would be desirable to identify new markers to properly select patients for surgical treatment. 1. Introduction Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of malignancies with various clinical presentation and growth rates [1–3]. In the current literature, the vast majority of GEP-NETs fall into two nearly distinct categories: pancreatic neuroendocrine tumors, also known as islet cell tumors, and gastrointestinal neuroendocrine tumors, usually grouped in carcinoids [4–6]. In the clinical fashion, gastrointestinal NETs tend to grow much more slowly than pancreatic NETs and also differ in the tumor biology and prognosis [6–8]. It is common to find these tumors in advanced stage, with metastases frequently involving the liver [9–12]. In particular, for gastrointestinal NETs, it is reported that nearly 50–75% of small bowel NETs develop hepatic metastases [13–15]. Although there is uniform consensus for the treatment of primary tumor, there is still

References

[1]  I. M. Modlin, K. D. Lye, and M. Kidd, “A 5-decade analysis of 13,715 carcinoid tumors,” Cancer, vol. 97, no. 4, pp. 934–959, 2003.
[2]  B. Lawrence, B. I. Gustafsson, A. Chan, B. Svejda, M. Kidd, and I. M. Modlin, “The epidemiology of gastroenteropancreatic neuroendocrine tumors,” Endocrinology and Metabolism Clinics of North America, vol. 40, no. 1, pp. 1–18, 2011.
[3]  S. Schimmack, B. Svejda, B. Lawrence, M. Kidd, and I. M. Modlin, “The diversity and commonalities of gastroenteropancreatic neuroendocrine tumors,” Langenbeck's Archives of Surgery, vol. 396, no. 3, pp. 273–298, 2011.
[4]  B. Eriksson, “New drugs in neuroendocrine tumors: rising of new therapeutic philosophies?” Current Opinion in Oncology, vol. 22, no. 4, pp. 381–386, 2010.
[5]  K. ?berg and D. Castellano, “Current knowledge on diagnosis and staging of neuroendocrine tumors,” Cancer and Metastasis Reviews, vol. 30, supplement 1, pp. S3–S7, 2011.
[6]  C. J. Auernhammer and B. G?ke, “Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin,” Gut, vol. 60, no. 7, pp. 1009–1021, 2011.
[7]  G. C. Nikou, N. J. Lygidakis, C. Toubanakis et al., “Current diagnosis and treatment of gastrointestinal carcinoids in a series of 101 patients: the significance of serum Chromogranin-A, Somatostatin Receptor Scintigraphy and Somatostatin analogues,” Hepato-Gastroenterology, vol. 52, no. 63, pp. 731–741, 2005.
[8]  C. S. Cho, D. M. Labow, L. Tang et al., “Histologic grade is correlated with outcome after resection of hepatic neuroendocrine neoplasms,” Cancer, vol. 113, no. 1, pp. 126–134, 2008.
[9]  E. T. Janson, L. Holmberg, M. Stridsberg et al., “Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center,” Annals of Oncology, vol. 8, no. 7, pp. 685–690, 1997.
[10]  P. Hellman, T. Lundstr?m, U. ?hrvall et al., “Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases,” World Journal of Surgery, vol. 26, no. 8, pp. 991–997, 2002.
[11]  J. A. Norton, “Endocrine tumours of the gastrointestinal tract. Surgical treatment of neuroendocrine metastases,” Best Practice and Research Clinical Gastroenterology, vol. 19, no. 4, pp. 577–583, 2005.
[12]  V. Mazzaferro, A. Pulvirenti, and J. Coppa, “Neuroendocrine tumors metastatic to the liver: how to select patients for liver transplantation?” Journal of Hepatology, vol. 47, no. 4, pp. 460–466, 2007.
[13]  I. M. Modlin, K. Oberg, D. C. Chung et al., “Gastroenteropancreatic neuroendocrine tumours,” The Lancet Oncology, vol. 9, no. 1, pp. 61–72, 2008.
[14]  D. Gomez, H. Z. Malik, A. Al-Mukthar et al., “Hepatic resection for metastatic gastrointestinal and pancreatic neuroendocrine tumours: outcome and prognostic predictors,” HPB, vol. 9, no. 5, pp. 345–351, 2007.
[15]  K. M. Nykjaer, H. Gr?nbaek, D. T. Nielsen, P. Christiansen, and L. B. Astrup, “Description of patients with midgut carcinoid tumours: clinical database from a Danish centre,” In Vivo, vol. 21, no. 4, pp. 679–684, 2007.
[16]  S. Musunuru, H. Chen, S. Rajpal et al., “Metastatic neuroendocrine hepatic tumors: resection improves survival,” Archives of Surgery, vol. 141, no. 10, pp. 1000–1004, 2006.
[17]  C. S. Landry, C. R. Scoggins, K. M. Mcmasters, and R. C. G. Martin, “Management of hepatic metastasis of gastrointestinal carcinoid tumors,” Journal of Surgical Oncology, vol. 97, no. 3, pp. 253–258, 2008.
[18]  A. Frilling, J. Li, E. Malamutmann, K. W. Schmid, A. Bockisch, and C. E. Broelsch, “Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease,” British Journal of Surgery, vol. 96, no. 2, pp. 175–184, 2009.
[19]  H. Chen, J. M. Hardacre, A. Uzar, J. L. Cameron, and M. A. Choti, “Isolated liver metastases from neuroendocrine tumors: does resection prolong survival?” Journal of the American College of Surgeons, vol. 187, no. 1, pp. 88–93, 1998.
[20]  G. L. Grazi, M. Cescon, F. Pierangeli et al., “Highly aggressive policy of hepatic resections for neuroendocrine liver metastases,” Hepato-Gastroenterology, vol. 47, no. 32, pp. 481–486, 2000.
[21]  A. Ahmed, G. Turner, B. King et al., “Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study,” Endocrine-Related Cancer, vol. 16, no. 3, pp. 885–894, 2009.
[22]  K. A. Yao, M. S. Talamonti, A. Nemcek et al., “Indications and results of liver resection and hepatic chemoembolization for metastatic gastrointestinal neuroendocrine tumors,” Surgery, vol. 130, no. 4, pp. 677–685, 2001.
[23]  D. A. Osborne, E. E. Zervos, J. Strosberg et al., “Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors,” Annals of Surgical Oncology, vol. 13, no. 4, pp. 572–581, 2006.
[24]  J. Coppa, A. Pulvirenti, M. Schiavo et al., “Resection versus transplantation for liver metastases from neuroendocrine tumors,” Transplantation Proceedings, vol. 33, no. 1-2, pp. 1537–1539, 2001.
[25]  P. B. Burns, R. J. Rohrich, and K. C. Chung, “The levels of evidence and their role in evidence-based medicine,” Plastic and Reconstructive Surgery, vol. 128, no. 1, pp. 305–310, 2011.
[26]  M. K. Parmar, V. Torri, and L. Stewart, “Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints,” Statistics in Medicine, vol. 17, no. 24, pp. 2815–2834, 1998.
[27]  G. Wells, B. Shea, D. O’Connell, et al., “The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses,” 2012, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
[28]  C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” Biometrics, vol. 50, no. 4, pp. 1088–1101, 1994.
[29]  M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.
[30]  J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003.
[31]  D. F. Stroup, J. A. Berlin, S. C. Morton et al., “Meta-analysis of observational studies in epidemiology: a proposal for reporting,” Journal of the American Medical Association, vol. 283, no. 15, pp. 2008–2012, 2000.
[32]  D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “PRISMAG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” PLoS Medicine, vol. 6, no. 7, Article ID e1000097, 2009.
[33]  A. Saxena, T. C. Chua, M. Perera, F. Chu, and D. L. Morris, “Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review,” Surgical Oncology, vol. 21, no. 3, pp. e131–e141, 2012.
[34]  J. Higgins, S. Green, and C. Collaboration, Cochrane Handbook for Systematic Reviews of Interventions, vol. 5, Wiley Online Library, 2008.
[35]  R. S. Chamberlain, D. Canes, K. T. Brown et al., “Hepatic neuroendocrine metastases: does intervention alter outcomes?” Journal of the American College of Surgeons, vol. 190, no. 4, pp. 432–445, 2000.
[36]  J. A. Norton, R. S. Warren, M. G. Kelly, M. B. Zuraek, and R. T. Jensen, “Aggressive surgery for metastatic liver neuroendocrine tumors,” Surgery, vol. 134, no. 6, pp. 1057–1063, 2003.
[37]  J. M. Sarmiento, G. Heywood, J. Rubin, D. M. Ilstrup, D. M. Nagorney, and F. G. Que, “Surgical treatment of neuroendocrine metastases to the liver: a plea for resection to increase survival,” Journal of the American College of Surgeons, vol. 197, no. 1, pp. 29–37, 2003.
[38]  O. Rorstad, “Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract,” Journal of Surgical Oncology, vol. 89, no. 3, pp. 151–160, 2005.
[39]  J. Soga, “The term “carcinoid” is a misnomer: the evidence based on local invasion,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article 15, 2009.
[40]  D. S. Klimstra, I. R. Modlin, D. Coppola, R. V. Lloyd, and S. Suster, “The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems,” Pancreas, vol. 39, no. 6, pp. 707–712, 2010.
[41]  K. K. Turaga and L. K. Kvols, “Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 113–132, 2011.
[42]  R. Sutcliffe, D. Maguire, J. Ramage, M. Rela, and N. Heaton, “Management of neuroendocrine liver metastases,” American Journal of Surgery, vol. 187, no. 1, pp. 39–46, 2004.
[43]  R. Whitney, C. Tatum, M. Hahl et al., “Safety of hepatic resection in metastatic disease to the liver after yttrium-90 therapy,” Journal of Surgical Research, vol. 166, no. 2, pp. 236–240, 2011.
[44]  J. R. Strosberg, A. Cheema, and L. K. Kvols, “A Review of systemic and liver-directed therapies for metastatic neuroendocrine tumors of the gastroenteropancreatic tract,” Cancer Control, vol. 18, no. 2, pp. 127–137, 2011.
[45]  Z. Yang, L. H. Tang, and D. S. Klimstra, “Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification,” American Journal of Surgical Pathology, vol. 35, no. 6, pp. 853–860, 2011.
[46]  R. Srirajaskanthan, C. Toumpanakis, T. Meyer, and M. E. Caplin, “Review article: future therapies for management of metastatic gastroenteropancreatic neuroendocrine tumours,” Alimentary Pharmacology and Therapeutics, vol. 29, no. 11, pp. 1143–1154, 2009.
[47]  R. Sutton, H. E. Doran, E. M. I. Williams, et al., “Surgery for midgut carcinoid,” Endocrine-Related Cancer, vol. 10, no. 4, pp. 469–481, 2003.
[48]  E. Bonaccorsi-Riani, C. Apestegui, A. Jouret-Mourin et al., “Liver transplantation and neuroendocrine tumors: lessons from a single centre experience and from the literature review,” Transplant International, vol. 23, no. 7, pp. 668–678, 2010.
[49]  A. Saxena, T. C. Chua, A. Sarkar et al., “Progression and survival results after radical hepatic metastasectomy of indolent advanced neuroendocrine neoplasms (NENs) supports an aggressive surgical approach,” Surgery, vol. 149, no. 2, pp. 209–220, 2011.
[50]  H. Nave, E. M?ssinger, H. Feist, H. Lang, and H. R. Raab, “Surgery as primary treatment in patients with liver metastases from carcinoid tumors: a retrospective, unicentric study over 13 years,” Surgery, vol. 129, no. 2, pp. 170–175, 2001.
[51]  S. C. Mayo, M. C. De Jong, C. Pulitano et al., “Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis,” Annals of Surgical Oncology, vol. 17, no. 12, pp. 3129–3136, 2010.
[52]  S. C. Katz, C. Donkor, K. Glasgow et al., “T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases,” HPB, vol. 12, no. 10, pp. 674–683, 2010.
[53]  G. Chan, W. Kocha, R. Reid, A. Taqi, W. Wall, and D. Quan, “Liver transplantation for symptomatic liver metastases of neuroendocrine tumours,” Current Oncology, vol. 19, no. 4, pp. 217–221, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413