全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cardiovascular Risk Factors and Chronic Kidney Disease—FGF23: A Key Molecule in the Cardiovascular Disease

DOI: 10.1155/2014/381082

Full-Text   Cite this paper   Add to My Lib

Abstract:

Patients with chronic kidney disease (CKD) are at increased risk of mortality, mainly from cardiovascular disease. Moreover, abnormal mineral and bone metabolism, the so-called CKD-mineral and bone disorder (MBD), occurs from early stages of CKD. This CKD-MBD presents a strong cardiovascular risk for CKD patients. Discovery of fibroblast growth factor 23 (FGF23) has altered our understanding of CKD-MBD and has revealed more complex cross-talk and endocrine feedback loops between the kidney, parathyroid gland, intestines, and bone. During the past decade, reports of clinical studies have described the association between FGF23 and cardiovascular risks, left ventricular hypertrophy, and vascular calcification. Recent translational reports have described the existence of FGF23-Klotho axis in the vasculature and the causative effect of FGF23 on cardiovascular disease. These findings suggest FGF23 as a promising target for novel therapeutic approaches to improve clinical outcomes of CKD patients. 1. Introduction Patients with chronic kidney disease (CKD), particularly end-stage renal disease (ESRD), face an increased risk of mortality, mainly from cardiovascular disease (CVD) [1–4]. Recent reports of clinical studies have described CKD as an independent risk factor for CVD from its early stages [1, 2]. Among ESRD patients, the risk of cardiovascular mortality is 10–100 times greater than in healthy individuals [3, 4]. Structural and functional alterations of the cardiovascular system, for example, endothelial dysfunction, arterial stiffening, left ventricular hypertrophy (LVH), and vascular calcification, contribute to the overt risk of CVD. Traditional cardiovascular risk factors such as hypertension, hyperlipidemia, and diabetes do not completely explain high cardiovascular risk in CKD patients. Interventions that have been successful in the general population have failed to decrease mortality in CKD patients [5]. Nontraditional factors, particularly those related to abnormal mineral metabolism, hyperparathyroidism, and vitamin D deficiency, which have been grouped together as CKD-related mineral and bone disorders (CKD-MBD), have emerged to explain the increased risk of CVD in these patients [6]. Abnormalities of mineral and bone metabolism occur early in the course of CKD and progress as the glomerular filtration rate (GFR) declines [7]. Traditionally, the pathogenesis of CKD-MBD has been ascribed to a decline in 1,25-dihydroxyvitamin D (1,25(OH)2D) levels, leading to increases in serum parathyroid hormone (PTH) and subsequent alterations in calcium and

References

[1]  A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C.-Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004.
[2]  T. Ninomiya, Y. Kiyohara, M. Kubo et al., “Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama study,” Kidney International, vol. 68, no. 1, pp. 228–236, 2005.
[3]  R. N. Foley, P. S. Parfrey, and M. J. Sarnak, “Clinical epidemiology of cardiovascular disease in chronic renal disease,” American Journal of Kidney Diseases, vol. 32, no. 5, supplement 3, pp. S112–S119, 1998.
[4]  C. A. Herzog, J. Z. Ma, and A. J. Collins, “Poor long-term survival after acute myocardial infarction among patients on long-term dialysis,” The New England Journal of Medicine, vol. 339, no. 12, pp. 799–805, 1998.
[5]  C. Wanner, V. Krane, W. M?rz, et al., “Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis,” The New England Journal of Medicine, vol. 353, no. 3, pp. 238–248, 2005.
[6]  S. Moe, T. Drüeke, J. Cunningham et al., “Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO),” Kidney International, vol. 69, no. 11, pp. 1945–1953, 2006.
[7]  S. M. Moe, T. B. Drüeke, G. A. Block, et al., “KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD),” Kidney International, vol. 113, pp. S1–S130, 2009.
[8]  R. Bhuriya, S. Li, S.-C. Chen, P. A. McCullough, and G. L. Bakris, “Plasma parathyroid hormone level and prevalent cardiovascular disease in CKD stages 3 and 4: an analysis from the Kidney Early Evaluation Program (KEEP),” American Journal of Kidney Diseases, vol. 53, no. 4, supplement 4, pp. S3–S10, 2009.
[9]  N. Kimata, J. M. Albert, T. Akiba et al., “Association of mineral metabolism factors with all-cause and cardiovascular mortality in hemodialysis patients: the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS),” Hemodialysis International, vol. 11, no. 3, pp. 340–348, 2007.
[10]  M. Wolf and R. Thadhani, “Vitamin D in patients with renal failure: a summary of observational mortality studies and steps moving forward,” Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 487–490, 2007.
[11]  P. Evenepoel, B. Meijers, L. Viaene et al., “Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 7, pp. 1268–1276, 2010.
[12]  T. Isakova, P. Wahl, G. S. Vargas et al., “Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease,” Kidney International, vol. 79, no. 12, pp. 1370–1378, 2011.
[13]  ADHR Consortium, “Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23,” Nature Genetics, vol. 26, no. 3, pp. 345–348, 2000.
[14]  T. Shimada, S. Mizutani, T. Muto et al., “Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6500–6505, 2001.
[15]  T. Larsson, R. Marsell, E. Schipani et al., “Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis,” Endocrinology, vol. 145, no. 7, pp. 3087–3094, 2004.
[16]  J. Gattineni, C. Bates, K. Twombley et al., “FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1,” American Journal of Physiology: Renal Physiology, vol. 297, no. 2, pp. F282–F291, 2009.
[17]  L. Dailey, D. Ambrosetti, A. Mansukhani, and C. Basilico, “Mechanisms underlying differential responses to FGF signaling,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 233–247, 2005.
[18]  V. P. Eswarakumar, I. Lax, and J. Schlessinger, “Cellular signaling by fibroblast growth factor receptors,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 139–149, 2005.
[19]  X. Yu, O. A. Ibrahimi, R. Goetz et al., “Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23,” Endocrinology, vol. 146, no. 11, pp. 4647–4656, 2005.
[20]  H. Li, A. Martin, V. David, and L. D. Quarles, “Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype,” American Journal of Physiology: Endocrinology and Metabolism, vol. 300, no. 3, pp. E508–E517, 2011.
[21]  I. Z. Ben-Dov, H. Galitzer, V. Lavi-Moshayoff et al., “The parathyroid is a target organ for FGF23 in rats,” Journal of Clinical Investigation, vol. 117, no. 12, pp. 4003–4008, 2007.
[22]  M. Yamazaki, K. Ozono, T. Okada et al., “Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells,” Journal of Cellular Biochemistry, vol. 111, no. 5, pp. 1210–1221, 2010.
[23]  I. Urakawa, Y. Yamazaki, T. Shimada et al., “Klotho converts canonical FGF receptor into a specific receptor for FGF23,” Nature, vol. 444, no. 7120, pp. 770–774, 2006.
[24]  M. C. Hu, M. Shi, J. Zhang et al., “Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule,” FASEB Journal, vol. 24, no. 9, pp. 3438–3450, 2010.
[25]  M. Kuro-O, “Phosphate and Klotho,” Kidney International, no. 121, pp. S20–S23, 2011.
[26]  T. Shimada, I. Urakawa, Y. Yamazaki et al., “FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa,” Biochemical and Biophysical Research Communications, vol. 314, no. 2, pp. 409–414, 2004.
[27]  X. Yan, H. Yokote, X. Jing et al., “Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells,” Genes to Cells, vol. 10, no. 5, pp. 489–502, 2005.
[28]  T. Shimada, H. Hasegawa, Y. Yamazaki et al., “FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis,” Journal of Bone and Mineral Research, vol. 19, no. 3, pp. 429–435, 2004.
[29]  H. Hasegawa, N. Nagano, I. Urakawa et al., “Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease,” Kidney International, vol. 78, no. 10, pp. 975–980, 2010.
[30]  S. Liu, W. Tang, J. Zhou et al., “Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1305–1315, 2006.
[31]  R. Masuyama, I. Stockmans, S. Torrekens et al., “Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3150–3159, 2006.
[32]  T. Shimada, Y. Yamazaki, M. Takahashi et al., “Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism,” American Journal of Physiology: Renal Physiology, vol. 289, no. 5, pp. F1088–F1095, 2005.
[33]  H. Nishi, T. Nii-Kono, S. Nakanishi et al., “Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism,” Nephron, vol. 101, no. 2, pp. c94–c99, 2005.
[34]  D. Hansen, K. Rasmussen, S. M. Pedersen, L. M. Rasmussen, and L. Brandi, “Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol,” Nephrology Dialysis Transplantation, vol. 27, no. 6, pp. 2263–2269, 2012.
[35]  H. Komaba and M. Fukagawa, “FGF23-parathyroid interaction: implications in chronic kidney disease,” Kidney International, vol. 77, no. 4, pp. 292–298, 2010.
[36]  T. Krajisnik, P. Bj?rklund, R. Marsell et al., “Fibroblast growth factor-23 regulates parathyroid hormone and 1α-hydroxylase expression in cultured bovine parathyroid cells,” Journal of Endocrinology, vol. 195, no. 1, pp. 125–131, 2007.
[37]  J. Hofman-Bang, G. Martuseviciene, M. A. Santini, K. Olgaard, and E. Lewin, “Increased parathyroid expression of klotho in uremic rats,” Kidney International, vol. 78, no. 11, pp. 1119–1127, 2010.
[38]  R. Canalejo, A. Canalejo, J. M. Martinez-Moreno et al., “FGF23 fails to inhibit uremic parathyroid glands,” Journal of the American Society of Nephrology, vol. 21, no. 7, pp. 1125–1135, 2010.
[39]  F. Saji, T. Shigematsu, T. Sakaguchi et al., “Fibroblast growth factor 23 production in bone is directly regulated by 1α,25-dihydroxyvitamin D, but not PTH,” American Journal of Physiology: Renal Physiology, vol. 299, no. 5, pp. F1212–F1217, 2010.
[40]  I. López, M. E. Rodríguez-Ortiz, Y. Almadén, et al., “Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo,” Kidney International, vol. 80, no. 5, pp. 475–482, 2011.
[41]  Y. Rhee, N. Bivi, E. Farrow et al., “Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo,” Bone, vol. 49, no. 4, pp. 636–643, 2011.
[42]  S.-A. M. Burnett-Bowie, M. P. Henao, M. E. Dere, H. Lee, and B. Z. Leder, “Effects of hPTH(1-34) infusion on circulating serum phosphate, 1,25-dihydroxyvitamin D, and FGF23 levels in healthy men,” Journal of Bone and Mineral Research, vol. 24, no. 10, pp. 1681–1685, 2009.
[43]  O. M. Gutiérrez, K. T. Smith, A. Barchi-Chung, N. M. Patel, T. Isakova, and M. Wolf, “(1-34) parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers,” Clinical Journal of the American Society of Nephrology, vol. 7, no. 1, pp. 139–145, 2012.
[44]  K. Wesseling-Perry, G. C. Harkins, H.-J. Wang et al., “The calcemic response to continuous parathyroid hormone (PTH)(1-34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH(7-84),” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2772–2780, 2010.
[45]  O. M. Gutiérrez, M. Mannstadt, T. Isakova, et al., “Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis,” The New England Journal of Medicine, vol. 359, no. 6, pp. 584–592, 2008.
[46]  S. Seiler, B. Reichart, D. Roth, E. Seibert, D. Fliser, and G. H. Heine, “FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment,” Nephrology Dialysis Transplantation, vol. 25, no. 12, pp. 3983–3989, 2010.
[47]  J. Kendrick, A. K. Cheung, J. S. Kaufman et al., “FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis,” Journal of the American Society of Nephrology, vol. 22, no. 10, pp. 1913–1922, 2011.
[48]  N. Koh, T. Fujimori, S. Nishiguchi et al., “Severely reduced production of klotho in human chronic renal failure kidney,” Biochemical and Biophysical Research Communications, vol. 280, no. 4, pp. 1015–1020, 2001.
[49]  G. Jean, J.-C. Terrat, T. Vanel et al., “High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 24, no. 9, pp. 2792–2796, 2009.
[50]  H. Olauson, A. R. Qureshi, T. Miyamoto et al., “Relation between serum fibroblast growth factor-23 level and mortality in incident dialysis patients: are gender and cardiovascular disease confounding the relationship?” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 3033–3038, 2010.
[51]  T. Isakova, H. Xie, W. Yang et al., “Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease,” Journal of the American Medical Association, vol. 305, no. 23, pp. 2432–2439, 2011.
[52]  C. Nakano, T. Hamano, N. Fujii et al., “Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis,” Bone, vol. 50, no. 6, pp. 1266–1274, 2012.
[53]  H. J. Hsu and M.-S. Wu, “Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients,” American Journal of the Medical Sciences, vol. 337, no. 2, pp. 116–122, 2009.
[54]  O. M. Gutiérrez, J. L. Januzzi, T. Isakova et al., “Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease,” Circulation, vol. 119, no. 19, pp. 2545–2552, 2009.
[55]  A. Kirkpantur, M. Balci, O. A. Gurbuz et al., “Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 26, no. 4, pp. 1346–1354, 2011.
[56]  C. Faul, A. P. Amaral, B. Oskouei et al., “FGF23 induces left ventricular hypertrophy,” Journal of Clinical Investigation, vol. 121, no. 11, pp. 4393–4408, 2011.
[57]  V. Shalhoub, E. M. Shatzen, S. C. Ward, et al., “FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality,” Journal of Clinical Investigation, vol. 122, no. 7, pp. 2543–2553, 2012.
[58]  G. M. London, A. P. Guérin, S. J. Marchais, F. Métivier, B. Pannier, and H. Adda, “Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality,” Nephrology Dialysis Transplantation, vol. 18, no. 9, pp. 1731–1740, 2003.
[59]  C. M. Shanahan, M. H. Crouthamel, A. Kapustin, and C. M. Giachelli, “Arterial calcification in chronic kidney disease: key roles for calcium and phosphate,” Circulation Research, vol. 109, no. 6, pp. 697–711, 2011.
[60]  K. Hruska, S. Mathew, R. Lund, Y. Fang, and T. Sugatani, “Cardiovascular risk factors in chronic kidney disease: does phosphate qualify?” Kidney international, vol. 79, supplement 121, pp. S9–S13, 2011.
[61]  S. Jono, M. D. McKee, C. E. Murry et al., “Phosphate regulation of vascular smooth muscle cell calcification,” Circulation Research, vol. 87, no. 7, pp. E10–E17, 2000.
[62]  X. Li, H.-Y. Yang, and C. M. Giachelli, “Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification,” Circulation Research, vol. 98, no. 7, pp. 905–912, 2006.
[63]  M. Y. Speer, H.-Y. Yang, T. Brabb et al., “Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries,” Circulation Research, vol. 104, no. 6, pp. 733–741, 2009.
[64]  W. G. Goodman, J. Goldin, B. D. Kuizon et al., “Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis,” The New England Journal of Medicine, vol. 342, no. 20, pp. 1478–1483, 2000.
[65]  K. L. Adeney, D. S. Siscovick, J. H. Ix et al., “Association of serum phosphate with vascular and valvular calcification in moderate CKD,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 381–387, 2009.
[66]  J. H. Ix, I. H. de Boer, C. A. Peralta et al., “Serum phosphorus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 3, pp. 609–615, 2009.
[67]  R. Villa-Bellosta, Y. E. Bogaert, M. Levi, and V. Sorribas, “Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1030–1036, 2007.
[68]  J. Taylor, M. Butcher, M. Zeadin, A. Politano, and S. G. Shaughnessy, “Oxidized low-density lipoprotein promotes osteoblast differentiation in primary cultures of vascular smooth muscle cells by up-regulating Osterix expression in an Msx2-dependent manner,” Journal of Cellular Biochemistry, vol. 112, no. 2, pp. 581–588, 2011.
[69]  H. Mitani, N. Ishizaka, T. Aizawa et al., “In vivo Klotho gene transfer ameliorates angiotensin II-induced renal damage,” Hypertension, vol. 39, no. 4, pp. 838–843, 2002.
[70]  R. Nakano-Kurimoto, K. Ikeda, M. Uraoka et al., “Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 297, no. 5, pp. H1673–H1684, 2009.
[71]  J. Donate-Correa, C. Mora-Fernández, and R. Martínez-Sanz, “Expression of FGF23/KLOTHO system in human vascular tissue,” International Journal of Cardiology, vol. 165, no. 1, pp. 179–183, 2013.
[72]  K. Lim, T. S. Lu, G. Molostvov, et al., “Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23,” Circulation, vol. 125, no. 18, pp. 2243–2255, 2012.
[73]  J. J. Scialla, W. L. Lau, M. P. Reilly, et al., “Fibroblast growth factor 23 is not associated with and does not induce arterial calcification,” Kidney International, vol. 83, no. 6, pp. 1159–1168, 2013.
[74]  K. Lindberg, H. Olauson, R. Amin et al., “Arterial klotho expression and FGF23 effects on vascular calcification and function,” PLoS ONE, vol. 8, no. 4, Article ID e60658, 2013.
[75]  Y. Fang, C. Ginsberg, T. Sugatani, M. C. Monier-Faugere, H. Malluche, and K. A. Hruska, “Early chronic kidney disease-mineral bone disorder stimulates vascular calcification,” Kidney International, 2013.
[76]  R. Jimbo, F. Kawakami-Mori, S. Mu, et al., “Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency,” Kidney International, 2013.
[77]  M. Nakayama, Y. Kaizu, M. Nagata, et al., “Fibroblast growth factor 23 is associated with carotid artery calcification in chronic kidney disease patients not undergoing dialysis: a cross-sectional study,” BMC Nephrology, vol. 14, article 22, 2013.
[78]  M. Balci, A. Kirkpantur, M. Gulbay, and O. A. Gurbuz, “Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients,” Hemodialysis International, vol. 14, no. 4, pp. 425–432, 2010.
[79]  M. M. Nasrallah, A. R. El-Shehaby, M. M. Salem, N. A. Osman, E. El Sheikh, and U. A. Sharaf El Din, “Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2679–2685, 2010.
[80]  S.-A. M. Burnett, S. C. Gunawardene, F. R. Bringhurst, H. Jüppner, H. Lee, and J. S. Finkelstein, “Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women,” Journal of Bone and Mineral Research, vol. 21, no. 8, pp. 1187–1196, 2006.
[81]  S. L. Ferrari, J.-P. Bonjour, and R. Rizzoli, “Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1519–1524, 2005.
[82]  T. Isakova, O. M. Gutirrez, K. Smith et al., “Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 26, no. 2, pp. 584–591, 2011.
[83]  T. Isakova, A. Barchi-Chung, G. Enfield, et al., “Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD,” Clinical Journal of the American Society of Nephrology, vol. 8, no. 6, pp. 1009–1018, 2013.
[84]  A. L. E. Cancela, R. B. Oliveira, F. G. Graciolli et al., “Fibroblast growth factor 23 in hemodialysis patients: effects of phosphate binder, calcitriol and calcium concentration in the dialysate,” Nephron, vol. 117, no. 1, pp. c74–c82, 2010.
[85]  F. Koiwa, J. J. Kazama, A. Tokumoto et al., “Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients,” Therapeutic Apheresis and Dialysis, vol. 9, no. 4, pp. 336–339, 2005.
[86]  R. B. Oliveira, A. L. E. Cancela, F. G. Graciolli et al., “Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy?” Clinical Journal of the American Society of Nephrology, vol. 5, no. 2, pp. 286–291, 2010.
[87]  C. D. Chue, J. N. Townend, W. E. Moody, et al., “Cardiovascular effects of sevelamer in stage 3 CKD,” Journal of the American Society of Nephrology, vol. 24, no. 5, pp. 842–852, 2013.
[88]  E. Gonzalez-Parra, M. L. Gonzalez-Casaus, A. Galán et al., “Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients,” Nephrology Dialysis Transplantation, vol. 26, no. 8, pp. 2567–2571, 2011.
[89]  S. Soriano, R. Ojeda, M. Rodríguez, et al., “The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients,” Clinical Nephrology, vol. 80, no. 1, pp. 17–22, 2013.
[90]  M. Koizumi, H. Komaba, S. Nakanishi, A. Fujimori, and M. Fukagawa, “Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism,” Nephrology Dialysis Transplantation, vol. 27, no. 2, pp. 784–790, 2012.
[91]  J. B. Wetmore, S. Liu, R. Krebill, R. Menard, and L. D. Quarles, “Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 1, pp. 110–116, 2010.
[92]  H. J. Kim, H. Kim, N. Shin, et al., “Cinacalcet lowering of serum fibroblast growth factor-23 concentration may be independent from serum Ca, P, PTH and dose of active vitamin D in peritoneal dialysis patients: a randomized controlled study,” BMC Nephrology, vol. 14, article 112, 2013.
[93]  J. L. Finch, M. Tokumoto, H. Nakamura et al., “Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease,” American Journal of Physiology: Renal Physiology, vol. 298, no. 6, pp. F1315–F1322, 2010.
[94]  K. Wesseling-Perry, R. C. Pereira, S. Sahney et al., “Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism,” Kidney International, vol. 79, no. 1, pp. 112–119, 2011.
[95]  M. Teng, M. Wolf, M. N. Ofsthun et al., “Activated injectable vitamin D and hemodialysis survival: a historical cohort study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1115–1125, 2005.
[96]  M. Naves-Díaz, D. Alvarez-Hernández, J. Passlick-Deetjen, et al., “Oral active vitamin D is associated with improved survival in hemodialysis patients,” Kidney International, vol. 74, no. 8, pp. 1070–1078, 2008.
[97]  H. Zebger-Gong, D. Müller, M. Diercke et al., “1,25-dihydroxyvitamin D3-induced aortic calcifications in experimental uremia: up-regulation of osteoblast markers, calcium-transporting proteins and osterix,” Journal of Hypertension, vol. 29, no. 2, pp. 339–348, 2011.
[98]  T. B. Drüeke, “Role of vitamin D in vascular calcification: bad guy or good guy?” Nephrology Dialysis Transplantation, vol. 27, no. 5, pp. 1704–1707, 2012.
[99]  Y. Aoshima, M. Mizobuchi, H. Ogata, et al., “Vitamin D receptor activators inhibit vascular smooth muscle cell mineralization induced by phosphate and TNF-α,” Nephrology Dialysis Transplantation, vol. 27, no. 5, pp. 1800–1806.
[100]  N. Bodyak, J. C. Ayus, S. Achinger et al., “Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 16810–16815, 2007.
[101]  R. Thadhani, E. Appelbaum, Y. Pritchett et al., “Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial,” Journal of the American Medical Association, vol. 307, no. 7, pp. 674–684, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413