全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prostaglandin E2 Does Not Modulate CCR7 Expression and Functionality after Differentiation of Blood Monocytes into Macrophages

DOI: 10.1155/2013/918016

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previously, we demonstrated that prostaglandin E2 (PGE2) induces C-C chemokine receptor type 7 (CCR7) expression on human monocytes, which stimulates their subsequent migration in response to the CCR7 natural ligands CCL19 and CCL21. In this study, we determined whether PGE2 affects CCR7 expression on macrophages. Flow cytometric analysis and chemotaxis assays were performed on Mono Mac-1-derived macrophage (MDMM-1) as well as unpolarized monocyte-derived macrophages (MDMs) to determine the CCR7 expression and functionality in the presence of PGE2. Data revealed that a MDMM-1 exhibited markedly downregulated CCR7 expression and functionality that were partially restored by treatment with PGE2. In MDMs, we observed a drastic downregulation of CCR7 expression and functionality that were unaffected following PGE2 treatment. Our data indicate that monocyte differentiation induces the loss of CCR7 expression and that PGE2 is unable to modulate CCR7 expression and functionality as shown previously in monocytes. 1. Introduction Monocytes and macrophages orchestrate proper immune responses to pathogens. Monocytes have been demonstrated to be precursors of professional antigen-presenting cells, such as macrophages and dendritic cells (DCs) [1–3]. In response to danger stimuli, circulating blood monocytes migrate into damaged or infected tissues and differentiate into mature macrophages or DCs. After taking up antigens, the activated macrophages and DCs migrate to the draining lymph nodes to present the antigens to T and B cells. Chemokine receptors confer upon cells the ability to detect and move directionally toward a chemotactic stimulus. C-C chemokine receptor type 7 (CCR7) plays a leading role in the mechanism controlling the entry of lymphocytes and mature DCs into lymph nodes. Within lymph nodes, these cells encounter other immune cells for activation, determining the success of cellular immunity after infection [4]. For immature DCs, the maturation process is initiated upon sensing “danger signals” (tissue damage, inflammatory cytokines, or pathogens) [5]; this process occurs concomitantly with their migration from peripheral tissues to the draining lymph nodes. During maturation, CCR7 expression is upregulated, which guides the migratory DCs to the lymph nodes [6–8]. The chemokines CCL19 and CCL21 are the natural ligands of CCR7, and they are expressed by lymphatic endothelium and/or within lymph nodes by stromal cells, endothelial cells, and DCs [9–13]. Mice deficient in CCL19, CCL21, or CCR7 demonstrate defective DC trafficking and altered immune

References

[1]  C. Auffray, D. K. Fogg, E. Narni-Mancinelli et al., “CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 595–606, 2009.
[2]  C. Auffray, M. H. Sieweke, and F. Geissmann, “Blood monocytes: development, heterogeneity, and relationship with dendritic cells,” Annual Review of Immunology, vol. 27, pp. 669–692, 2009.
[3]  K. Liu, G. D. Victora, T. A. Schwickert et al., “In vivo analysis of dendritic cell development and homeostasis,” Science, vol. 324, no. 5925, pp. 392–397, 2009.
[4]  R. F?rster, A. C. Davalos-Misslitz, and A. Rot, “CCR7 and its ligands: balancing immunity and tolerance,” Nature Reviews Immunology, vol. 8, no. 5, pp. 362–371, 2008.
[5]  J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998.
[6]  R. F?rster, A. Schubel, D. Breitfeld et al., “CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs,” Cell, vol. 99, no. 1, pp. 23–33, 1999.
[7]  G. J. Randolph, V. Angeli, and M. A. Swartz, “Dendritic-cell trafficking to lymph nodes through lymphatic vessels,” Nature Reviews Immunology, vol. 5, no. 8, pp. 617–628, 2005.
[8]  M. D. Gunn, “Chemokine mediated control of dendritic cell migration and function,” Seminars in Immunology, vol. 15, no. 5, pp. 271–276, 2003.
[9]  M. D. Gunn, K. Tangemann, C. Tam, J. G. Cyster, S. D. Rosen, and L. T. Williams, “A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 258–263, 1998.
[10]  S. A. Luther, A. Bidgol, D. C. Hargreaves et al., “Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis,” Journal of Immunology, vol. 169, no. 1, pp. 424–433, 2002.
[11]  V. N. Ngo, H. L. Tang, and J. G. Cyster, “Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells,” Journal of Experimental Medicine, vol. 188, no. 1, pp. 181–191, 1998.
[12]  J. V. Stein, A. Rot, Y. Luo et al., “The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 61–75, 2000.
[13]  R. A. Warnock, J. J. Campbell, M. E. Dorf, A. Matsuzawa, L. M. McEvoy, and E. C. Butcher, “The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 77–88, 2000.
[14]  M. D. Gunn, S. Kyuwa, C. Tam et al., “Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization,” Journal of Experimental Medicine, vol. 189, no. 3, pp. 451–460, 1999.
[15]  H. Nakano and M. D. Gunn, “Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation,” Journal of Immunology, vol. 166, no. 1, pp. 361–369, 2001.
[16]  S. C. C?té, S. Pasvanis, S. Bounou, and N. Dumais, “CCR7-specific migration to CCL19 and CCL21 is induced by PGE2 stimulation in human monocytes: involvement of EP2/EP4 receptors activation,” Molecular Immunology, vol. 46, no. 13, pp. 2682–2693, 2009.
[17]  E. Scandella, Y. Men, S. Gillessen, R. F?rster, and M. Groettrup, “Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells,” Blood, vol. 100, no. 4, pp. 1354–1361, 2002.
[18]  E. Scandella, Y. Men, D. F. Legler et al., “CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2,” Blood, vol. 103, no. 5, pp. 1595–1601, 2004.
[19]  T. Luft, M. Jefford, P. Luetjens et al., “Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets,” Blood, vol. 100, no. 4, pp. 1362–1372, 2002.
[20]  M. Allaire, S. Coté, and N. Dumais, “Involvement of the MAPK and RhoA/ROCK pathways in PGE2-mediated CCR7-dependent monocyte migration,” Immunology Letters, vol. 146, no. 1-2, pp. 70–73, 2012.
[21]  N. Genois, G. A. Robichaud, and M. J. Tremblay, “Mono Mac 1: a new in vitro model system to study HIV-1 infection in human cells of the mononuclear phagocyte series,” Journal of Leukocyte Biology, vol. 68, no. 6, pp. 854–864, 2000.
[22]  H. W. L. Ziegler-Heitbrock, E. Thiel, A. Futterer, V. Herzog, A. Wirtz, and G. Riethmuller, “Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes,” International Journal of Cancer, vol. 41, no. 3, pp. 456–461, 1988.
[23]  M. Daigneault, J. A. Preston, H. M. Marriott, M. K. B. Whyte, and D. H. Dockrell, “The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages,” PloS ONE, vol. 5, no. 1, p. e8668, 2010.
[24]  R. J. Sokol, G. Hudson, and N. T. James, “Human macrophage development: a morphometric study,” Journal of Anatomy, vol. 151, pp. 27–35, 1987.
[25]  K. C. McCullough, S. Basta, S. Kn?tig et al., “Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection,” Immunology, vol. 98, no. 2, pp. 203–212, 1999.
[26]  R. Le Naour, P. Clayette, Y. Henin et al., “Infection of human macrophages with an endogenous tumour necrosis factor-α (TNF-α)-independent human immunodeficiency virus type 1 isolate is unresponsive to the TNF-α synthesis inhibitor RP 55778,” Journal of General Virology, vol. 75, no. 6, pp. 1379–1388, 1994.
[27]  H. W. L. Ziegler-Heitbrock and R. J. Ulevitch, “CD14: cell surface receptor and differentiation marker,” Immunology Today, vol. 14, no. 3, pp. 121–125, 1993.
[28]  S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005.
[29]  R. van Furth and Z. A. Cohn, “The origin and kinetics of mononuclear phagocytes,” Journal of Experimental Medicine, vol. 128, no. 3, pp. 415–435, 1968.
[30]  R. Van Furth, M. Diesselhoff Den Dulk, and H. Mattie, “Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction,” Journal of Experimental Medicine, vol. 138, no. 6, pp. 1314–1330, 1973.
[31]  J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000.
[32]  D. F. Robbiani, R. A. Finch, D. J?ger, W. A. Muller, A. C. Sartorelli, and G. J. Randolph, “The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes,” Cell, vol. 103, no. 5, pp. 757–768, 2000.
[33]  C. N. Serhan, “Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways,” Annual Review of Immunology, vol. 25, pp. 101–137, 2007.
[34]  G. J. Bellingan, H. Caldwell, S. E. M. Howie, I. Dransfield, and C. Haslett, “In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes,” Journal of Immunology, vol. 157, no. 6, pp. 2577–2585, 1996.
[35]  E. Kolaczkowska, A. Koziol, B. Plytycz, and B. Arnold, “Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis,” Immunobiology, vol. 215, no. 6, pp. 492–504, 2010.
[36]  E. J. Kunkel, C. H. Kim, N. H. Lazarus et al., “CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells,” Journal of Clinical Investigation, vol. 111, no. 7, pp. 1001–1010, 2003.
[37]  E. P. Bowman, N. A. Kuklin, K. R. Youngman et al., “The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells,” Journal of Experimental Medicine, vol. 195, no. 2, pp. 269–275, 2002.
[38]  A. E. Hauser, G. F. Debes, S. Arce et al., “Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response,” Journal of Immunology, vol. 169, no. 3, pp. 1277–1282, 2002.
[39]  A. E. Hauser, G. Muehlinghaus, R. A. Manz et al., “Long-lived plasma cells in immunity and inflammation,” Annals of the New York Academy of Sciences, vol. 987, pp. 266–269, 2003.
[40]  G. Muehlinghaus, L. Cigliano, S. Huehn et al., “Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells,” Blood, vol. 105, no. 10, pp. 3965–3971, 2005.
[41]  M. Baggiolini, B. Dewald, and B. Moser, “Human chemokines: an update,” Annual Review of Immunology, vol. 15, pp. 675–705, 1997.
[42]  K. K. Hyun, M. De La Luz Sierra, C. K. Williams, A. V. Gulino, and G. Tosato, “G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells,” Blood, vol. 108, no. 3, pp. 812–820, 2006.
[43]  B. A. Durafourt, C. S. Moore, D. A. Zammit et al., “Comparison of polarization properties of human adult microglia and blood-derived macrophages,” GLIA, vol. 60, no. 5, pp. 717–727, 2012.
[44]  A. J. Williams and B. N. Cronstein, “The effect of A2A adenosine receptor activation on C-C chemokine receptor 7 expression in human THP1 macrophages during inflammation,” Inflammation, vol. 35, no. 2, pp. 614–622, 2012.
[45]  Y. K. Mburu, J. Wang, M. A. Wood, W. H. Walker, and R. L. Ferris, “CCR7 mediates inflammation-associated tumor progression,” Immunologic Research, vol. 36, no. 1–3, pp. 61–72, 2006.
[46]  C. W. Pugh, G. G. MacPherson, and H. W. Steer, “Characterization of nonlymphoid cells derived from rat peripheral lymph,” Journal of Experimental Medicine, vol. 157, no. 6, pp. 1758–1779, 1983.
[47]  G. J. Randolph, K. Inaba, D. F. Robbiani, R. M. Steinman, and W. A. Muller, “Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo,” Immunity, vol. 11, no. 6, pp. 753–761, 1999.
[48]  C. C. Norbury, D. Malide, J. S. Gibbs, J. R. Bennink, and J. W. Yewdell, “Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo,” Nature Immunology, vol. 3, no. 3, pp. 265–271, 2002.
[49]  C. Cao, D. A. Lawrence, D. K. Strickland, and L. Zhang, “Aspecific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics,” Blood, vol. 106, no. 9, pp. 3234–3241, 2005.
[50]  G. J. Randolph, “Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis,” Current Opinion in Lipidology, vol. 19, no. 5, pp. 462–468, 2008.
[51]  F. Tacke, D. Alvarez, T. J. Kaplan et al., “Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 185–194, 2007.
[52]  V. Angeli, J. Llodrá, J. X. Rong et al., “Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization,” Immunity, vol. 21, no. 4, pp. 561–574, 2004.
[53]  J. Llodrá, V. Angeli, J. Liu, E. Trogan, E. A. Fisher, and G. J. Rendolph, “Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11779–11784, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413