全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ankylosing Spondylitis: From Cells to Genes

DOI: 10.1155/2013/501653

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown etiology, though it is considered an autoimmune disease. HLA-B27 is the risk factor most often associated with AS, and although the mechanism of involvement is unclear, the subtypes and other features of the relationship between HLA-B27 and AS have been studied for years. Additionally, the key role of IL-17 and Th17 cells in autoimmunity and inflammation suggests that the latter and the cytokines involved in their generation could play a role in the pathogenesis of this disease. Recent studies have described the sources of IL-17 and IL-23, as well as the characterization of Th17 cells in autoimmune diseases. Other cells, such as NK and regulatory T cells, have been implicated in autoimmunity and have been evaluated to ascertain their possible role in AS. Moreover, several polymorphisms, mutations and deletions in the regulatory proteins, protein-coding regions, and promoter regions of different genes involved in immune responses have been discovered and evaluated for possible genetic linkages to AS. In this review, we analyze the features of HLA-B27 and the suggested mechanisms of its involvement in AS while also focusing on the characterization of the immune response and the identification of genes associated with AS. 1. Introduction The spondyloarthropathies (SpA), now better denominated as spondyloarthritides (SpAs), are a diverse group of interrelated inflammatory arthritides that share multiple clinical features and common genetic predisposing factors. This group includes not only the prototypical disease, ankylosing spondylitis (AS), but also reactive arthritis (ReA), psoriatic arthritis (PsA), Crohn’s disease, undifferentiated SpA, and juvenile-onset spondyloarthritis [1]. The clinical features of AS include inflammatory back pain, asymmetrical peripheral oligoarthritis, enthesitis, and specific organ involvement, such as anterior uveitis, psoriasis, and chronic inflammatory bowel disease [2]. Its major clinical features include sacroilitis, loss of spinal mobility, and spinal inflammation. Chronic inflammation leads to fibrosis and ossification, where bridging spurs of bone known as syndesmophytes form, especially at the edges of the inter-vertebral discs, producing the ankylosing [3]. AS affects men more often than women, at a ratio of 2?:?1 [4]. The prevalence of the disease is between 0.1 and 1.4% of general populations [2]. Studies conducted in different countries have shown that the incidence of AS varies from 0.5 to 14 per 100,000 people per year [2]. Diagnoses of AS

References

[1]  M. Ehrenfeld, “Spondyloarthropathies,” Best Practice and Research: Clinical Rheumatology, vol. 26, no. 1, pp. 135–145, 2012.
[2]  J. Braun and J. Sieper, “Ankylosing spondylitis,” Lancet, vol. 369, no. 9570, pp. 1379–1390, 2007.
[3]  A. Ebringer and C. Wilson, “HLA molecules, bacteria and autoimmunity,” Journal of Medical Microbiology, vol. 49, no. 4, pp. 305–311, 2000.
[4]  E. Feldtkeller, M. A. Khan, D. van der Heijde, S. van der Linden, and J. Braun, “Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis,” Rheumatology International, vol. 23, no. 2, pp. 61–66, 2003.
[5]  S. van der Linden, H. A. Valkenburg, and A. Cats, “Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria,” Arthritis and Rheumatism, vol. 27, no. 4, pp. 361–368, 1984.
[6]  M. A. Brown, “Breakthroughs in genetic studies of ankylosing spondylitis,” Rheumatology, vol. 47, no. 2, pp. 132–137, 2008.
[7]  D. A. Brewerton, F. D. Hart, A. Nicholls, M. Caffrey, D. C. James, and R. D. Sturrock, “Ankylosing spondylitis and HL-A 27,” Lancet, vol. 1, no. 7809, pp. 904–907, 1973.
[8]  L. Schlosstein, P. I. Terasaki, R. Bluestone, and C. M. Pearson, “High association of an HL-A antigen, W27, with ankylosing spondylitis,” New England Journal of Medicine, vol. 288, no. 14, pp. 704–706, 1973.
[9]  J. D. Reveille and F. C. Arnett, “Spondyloarthritis: update on pathogenesis and management,” American Journal of Medicine, vol. 118, no. 6, pp. 592–603, 2005.
[10]  S. M. van der Linden, H. A. Valkenburg, B. M. de Jongh, and A. Cats, “The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population,” Arthritis and Rheumatism, vol. 27, no. 3, pp. 241–249, 1984.
[11]  M. A. Brown, K. D. Pile, L. G. Kennedy et al., “HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom,” Annals of the Rheumatic Diseases, vol. 55, no. 4, pp. 268–270, 1996.
[12]  J. D. Reveille, “Major histocompatibility genes and ankylosing spondylitis,” Best Practice and Research: Clinical Rheumatology, vol. 20, no. 3, pp. 601–609, 2006.
[13]  J. T. Gran, G. Husby, and M. Hordvik, “Prevalence of ankylosing spondylitis in males and females in a young middle-aged population of Tromso, northern Norway,” Annals of the Rheumatic Diseases, vol. 44, no. 6, pp. 359–367, 1985.
[14]  J. Braun, M. Bollow, G. Remlinger et al., “Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors,” Arthritis and Rheumatism, vol. 41, no. 1, pp. 58–67, 1998.
[15]  J. D. Reveille, E. J. Ball, and M. A. Khan, “HLA-B27 and genetic predisposing factors in spondyloarthropathies,” Current Opinion in Rheumatology, vol. 13, no. 4, pp. 265–272, 2001.
[16]  M. A. Brown, B. P. Wordsworth, and J. D. Reveille, “Genetics of ankylosing spondylitis,” Clinical and Experimental Rheumatology, vol. 20, no. 6, supplement 28, pp. S43–S49, 2002.
[17]  J. B. Armas, S. Gonzalez, J. Martinez-Borra et al., “Susceptibility to ankylosing spondylitis is independent of the Bw4 and Bw6 epitopes of HLA-B27 alleles,” Tissue Antigens, vol. 53, no. 3, pp. 237–243, 1999.
[18]  I. L. MacLean, S. Iqball, P. Woo et al., “HLA-B27 subtypes in the spondarthropathies,” Clinical and Experimental Immunology, vol. 91, no. 2, pp. 214–219, 1993.
[19]  C. López-Larrea, S. Gonzalez-Roces, and V. Alvarez, “HLA-B27 structure, function, and disease association,” Current Opinion in Rheumatology, vol. 8, no. 4, pp. 296–308, 1996.
[20]  E. J. Ball and M. A. Khan, “HLA-B27 polymorphism,” Joint Bone Spine, vol. 68, no. 5, pp. 378–382, 2001.
[21]  M. D'Amato, M. T. Fiorillo, C. Carcassi et al., “Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis,” European Journal of Immunology, vol. 25, no. 11, pp. 3199–3201, 1995.
[22]  F. Paladini, E. Taccari, M. T. Fiorillo et al., “Distribution of HLA-B27 subtypes in Sardinia and continental Italy and their association with spondylarthropathies,” Arthritis and Rheumatism, vol. 52, no. 10, pp. 3319–3321, 2005.
[23]  E. Nurzia, D. Narzi, A. Cauli et al., “Interaction pattern of Arg 62 in the a-pocket of differentially disease-associated HLA-B27 subtypes suggests distinct TCR binding modes,” PLoS ONE, vol. 7, no. 3, Article ID e32865, 2012.
[24]  J. A. Smith, E. M?rker-Hermann, and R. A. Colbert, “Pathogenesis of ankylosing spondylitis: current concepts,” Best Practice and Research: Clinical Rheumatology, vol. 20, no. 3, pp. 571–591, 2006.
[25]  A. Ziegler, B. Loll, R. Misselwitz, and B. Uchanska-Ziegler, “Implications of structural and thermodynamic studies of HLA-B27 subtypes exhibiting differential association with ankylosing spondylitis,” Advances in Experimental Medicine and Biology, vol. 649, pp. 177–194, 2009.
[26]  L. A. Bird, C. A. Peh, S. Kollnbeger, T. Elliott, A. J. McMichael A.J., and P. Bowness, “Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling,” European Journal of Immunology, vol. 33, no. 3, pp. 748–759, 2003.
[27]  S. Kollnberger, L. Bird, M. Y. Sun et al., “Cell-surface expression and immune receptor recognition of HLA-B27 homodimers,” Arthritis and Rheumatism, vol. 46, no. 11, pp. 2972–2982, 2002.
[28]  R. L. Allen and J. Trowsdale, “Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors,” Current Molecular Medicine, vol. 4, no. 1, pp. 59–65, 2004.
[29]  A. T. Chan, S. D. Kollnberger, L. R. Wedderburn, and P. Bowness, “Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis,” Arthritis and Rheumatism, vol. 52, no. 11, pp. 3586–3595, 2005.
[30]  M. Marcilla and J. A. López de Castro, “Peptides: the cornerstone of HLA-B27 biology and pathogenetic role in spondyloarthritis,” Tissue Antigens, vol. 71, no. 6, pp. 495–506, 2008.
[31]  M. N. Vázquez and J. A. López de Castro, “Similar cell surface expression of β2-microglobulin-free heavy chains by HLA-B27 subtypes differentially associated with ankylosing spondylitis,” Arthritis and Rheumatism, vol. 52, no. 10, pp. 3290–3299, 2005.
[32]  G. P. Thomas and M. A. Brown, “Genetics and genomics of ankylosing spondylitis,” Immunological Reviews, vol. 233, no. 1, pp. 162–180, 2010.
[33]  J. P. Mear, K. L. Schreiber, C. Münz et al., “Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies,” Journal of Immunology, vol. 163, no. 12, pp. 6665–6670, 1999.
[34]  M. L. DeLay, M. J. Turner, E. I. Klenk, J. A. Smith, D. P. Sowders, and R. A. Colbert, “HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2633–2643, 2009.
[35]  R. A. Colbert, M. L. DeLay, G. Layh-Schmitt, and D. P. Sowders, “HLA-B27 misfolding and spondyloarthropathies,” Prion, vol. 3, no. 1, pp. 15–26, 2009.
[36]  H. L. Pahl and P. A. Baeuerle, “The ER overload response: activation of NF-κB,” Trends in Biochemical Sciences, vol. 22, no. 2, pp. 63–67, 1997.
[37]  M. Virtala, J. Kirveskari, and K. Granfors, “HLA-B27 modulates the survival of Salmonella enteritidis in transfected L cells, possibly by impaired nitric oxide production,” Infection and Immunity, vol. 65, no. 10, pp. 4236–4242, 1997.
[38]  Y. Jiang, R. Zhang, J. Zheng et al., “Meta-analysis of 125 rheumatoid arthritis-related single nucleotide polymorphisms studied in the past two decades,” PloS One, vol. 7, no. 12, Article ID e51571, 2012.
[39]  A. Mathieu, F. Paladini, A. Vacca, A. Cauli, M. T. Fiorillo, and R. Sorrentino, “The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: a unifying hypothesis,” Autoimmunity Reviews, vol. 8, no. 5, pp. 420–425, 2009.
[40]  P. Miossec and J. K. Kolls, “Targeting IL-17 and TH17 cells in chronic inflammation,” Nature Reviews Drug Discovery, vol. 11, no. 10, pp. 763–776, 2012.
[41]  N. Yeremenko and D. Baeten, “IL-17 in spondyloarthritis: is the T-party over?” Arthritis Research and Therapy, vol. 13, no. 3, article 115, 2011.
[42]  A. Taylan, I. Sari, D. L. Kozaci et al., “Evaluation of the T helper 17 axis in ankylosing spondylitis,” Rheumatology International, vol. 32, no. 8, pp. 2511–2515, 2012.
[43]  H. Shen, J. C. Goodall, and J. S. Hill Gaston, “Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1647–1656, 2009.
[44]  A. Di Cesare, P. Di Meglio, and F. O. Nestle, “The IL-23Th17 axis in the immunopathogenesis of psoriasis,” Journal of Investigative Dermatology, vol. 129, no. 6, pp. 1339–1350, 2009.
[45]  P. P. Ahern, A. Izcue, K. J. Maloy, and F. Powrie, “The interleukin-23 axis in intestinal inflammation,” Immunological Reviews, vol. 226, no. 1, pp. 147–159, 2008.
[46]  L. Limón-Camacho, M. I. Vargas-Rojas, J. Vázquez-Mellado et al., “In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis,” Journal of Rheumatology, vol. 39, no. 4, pp. 830–835, 2012.
[47]  L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005.
[48]  Y. Iwakura and H. Ishigame, “The IL-23/IL-17 axis in inflammation,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1218–1222, 2006.
[49]  T. Noordenbos, N. Yeremenko, I. Gofita et al., “Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis,” Arthritis and Rheumatism, vol. 64, no. 1, pp. 99–109, 2012.
[50]  L. Zhang, Y. G. Li, Y. H. Li et al., “Increased frequencies of th22 cells as well as th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis,” PLoS ONE, vol. 7, no. 4, Article ID e31000, 2012.
[51]  L. Xueyi, C. Lina, W. Zhenbiao, H. Qing, L. Qiang, and P. Zhu, “Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-alpha therapy,” Journal of Clinical Immunology, vol. 33, no. 1, pp. 151–161, 2013.
[52]  C. Jandus, G. Bioley, J. P. Rivals, J. Dudler, D. Speiser, and P. Romero, “Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides,” Arthritis and Rheumatism, vol. 58, no. 8, pp. 2307–2317, 2008.
[53]  Y. Mei, F. Pan, J. Gao et al., “Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis,” Clinical Rheumatology, vol. 30, no. 2, pp. 269–273, 2011.
[54]  T. J. Kenna, S. I. Davidson, R. Duan et al., “Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis,” Arthritis and Rheumatism, vol. 64, no. 5, pp. 1420–1429, 2012.
[55]  W. P. Maksymowych, P. Chiowchanwisawakit, T. Clare, S. J. Pedersen, M. ?stergaard, and R. G. W. Lambert, “Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis evidence of a relationship between inflammation and new bone formation,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 93–102, 2009.
[56]  W. P. Maksymowych, D. Elewaut, and G. Schett, “Motion for debate: the development of ankylosis in ankylosing spondylitis is largely dependent on inflammation,” Arthritis and Rheumatism, vol. 64, no. 6, pp. 1713–1719, 2012.
[57]  G. Schett, “Independent development of inflammation and new bone formation in ankylosing spondylitis,” Arthritis and Rheumatism, 2012.
[58]  D. van der Heijde, R. Landewé, S. Einstein et al., “Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept,” Arthritis and Rheumatism, vol. 58, no. 5, pp. 1324–1331, 2008.
[59]  L. M. Francisco, P. T. Sage, and A. H. Sharpe, “The PD-1 pathway in tolerance and autoimmunity,” Immunological Reviews, vol. 236, no. 1, pp. 219–242, 2010.
[60]  D. J. Campbell and M. A. Koch, “Phenotypical and functional specialization of FOXP3+ regulatory T cells,” Nature Reviews Immunology, vol. 11, no. 2, pp. 119–130, 2011.
[61]  E. Azizi, A. Massoud, A. A. Amirzargar et al., “Association of CTLA4 gene polymorphism in iranian patients with ankylosing spondylitis,” Journal of Clinical Immunology, vol. 30, no. 2, pp. 268–271, 2010.
[62]  Y. H. Lee, J. D. Ji, J. Sohn, and G. G. Song, “Polymorphisms of CTLA-4 exon 1 +49, CTLA-4 promoter -318 and Fas promoter -670 in spondyloarthropathies,” Clinical Rheumatology, vol. 20, no. 6, pp. 420–422, 2001.
[63]  W. Y. Lee, Y. H. Chang, M. K. Lo et al., “Polymorphisms of cytotoxic T lymphocyte-associated antigen-4 and cytokine genes in Taiwanese patients with ankylosing spondylitis,” Tissue Antigens, vol. 75, no. 2, pp. 119–126, 2010.
[64]  X. Liu, L. H. Hu, Y. R. Li, F. H. Chen, Y. Ning, and Q. F. Yao, “Programmed cell death 1 gene polymorphisms is associated with ankylosing spondylitis in Chinese Han population,” Rheumatology International, vol. 31, no. 2, pp. 209–213, 2011.
[65]  N. Soleimanifar, A. A. Amirzargar, M. Mahmoudi et al., “Study of programmed cell death 1 (PDCD1) gene polymorphims in Iranian patients with ankylosing spondylitis,” Inflammation, vol. 34, no. 6, pp. 707–712, 2011.
[66]  C. H. Huang, R. H. Wong, J. C. C. Wei et al., “Effects of genetic polymorphisms of programmed cell death 1 and its ligands on the development of ankylosing spondylitis,” Rheumatology, vol. 50, no. 10, pp. 1809–1813, 2011.
[67]  S. H. Lee, Y. A. Lee, D. H. Woo et al., “Association of the programmed cell death 1 (PDCD1) gene polymorphism with ankylosing spondylitis in the Korean population,” Arthritis Research and Therapy, vol. 8, no. 6, article R163, 2006.
[68]  Q. Yang, Y. Liu, D. Liu, Y. Zhang, and K. Mu, “Association of polymorphisms in the programmed cell death 1 (PD-1) and PD-1 ligand genes with ankylosing spondylitis in a Chinese population,” Clinical and Experimental Rheumatology, vol. 29, no. 1, pp. 13–18, 2011.
[69]  Y. Wu, M. Ren, R. Yang et al., “Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis,” Arthritis Research and Therapy, vol. 13, no. 1, article R29, 2011.
[70]  S. S. Zhao, J. W. Hu, J. Wang, X. J. Lou, and L. L. Zhou, “Inverse correlation between CD4+CD25highCD127low/- regulatory T-cells and serum immunoglobulin A in patients with new-onset ankylosing spondylitis,” Journal of International Medical Research, vol. 39, no. 5, pp. 1968–1974, 2011.
[71]  H. Appel, P. Wu, R. Scheer et al., “Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis,” Journal of Rheumatology, vol. 38, no. 11, pp. 2445–2451, 2011.
[72]  Z. Tian, M. E. Gershwin, and C. Zhang, “Regulatory NK cells in autoimmune disease,” Journal of Autoimmunity, vol. 39, no. 3, pp. 206–215, 2012.
[73]  N. Azuz-Lieberman, G. Markel, S. Mizrahi et al., “The involvement of NK cells in ankylosing spondylitis,” International Immunology, vol. 17, no. 7, pp. 837–845, 2005.
[74]  A. R. French and W. M. Yokoyama, “Natural killer cells and autoimmunity,” Arthritis Research and Therapy, vol. 6, no. 1, pp. 8–14, 2004.
[75]  Y. W. Park, S. J. Kee, Y. N. Cho et al., “Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1753–1763, 2009.
[76]  T. Aramaki, H. Ida, Y. Izumi et al., “A significantly impaired natural killer cell activity due to a low activity on a per-cell basis in rheumatoid arthritis,” Modern Rheumatology, vol. 19, no. 3, pp. 245–252, 2009.
[77]  A. L. Cameron, B. Kirby, and C. E. M. Griffiths, “Circulating natural killer cells in psoriasis,” British Journal of Dermatology, vol. 149, no. 1, pp. 160–164, 2003.
[78]  D. Schepis, I. Gunnarsson, M. L. Eloranta et al., “Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus,” Immunology, vol. 126, no. 1, pp. 140–146, 2009.
[79]  S. Szántó, M. Aleksza, E. Mihály et al., “Intracytoplasmic cytokine expression and T cell subset distribution in the peripheral blood of patients with ankylosing spondylitis,” Journal of Rheumatology, vol. 35, no. 12, pp. 2372–2375, 2008.
[80]  T. Mousavi, H. Poormoghim, M. Moradi, N. Tajik, F. Shahsavar, and M. Soofi, “Phenotypic study of natural killer cell subsets in ankylosing spondylitis patients,” Iranian Journal of Allergy, Asthma and Immunology, vol. 8, no. 4, pp. 193–198, 2009.
[81]  F. Ciccia, A. Accardo-Palumbo, R. Alessandro, et al., “Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis,” Arthritis and Rheumatism, vol. 64, no. 6, pp. 1869–1878, 2012.
[82]  I. V. Zvyagin, I. Z. Mamedov, O. V. Britanova et al., “Contribution of functional KIR3DL1 to ankylosing spondylitis,” Cellular and Molecular Immunology, vol. 7, no. 6, pp. 471–476, 2010.
[83]  I. Wong-Baeza, A. Ridley, J. Shaw et al., “KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis,” Journal of Immunology, vol. 190, no. 7, pp. 3216–3224, 2013.
[84]  S. Wang, G. Li, R. Ge et al., “Association of KIR genotype with susceptibility to HLA-B27-positive ankylosing spondylitis,” Modern Rheumatology, vol. 23, no. 3, pp. 538–541, 2013.
[85]  Y. L. Jiao, B. C. Zhang, L. You et al., “Polymorphisms of KIR gene and HLA-C alleles: possible association with susceptibility to HLA-B27-positive patients with ankylosing spondylitis,” Journal of Clinical Immunology, vol. 30, no. 6, pp. 840–844, 2010.
[86]  R. Díaz-Pe?a, J. R. Vidal-Casti?eira, R. Alonso-Arias et al., “Association of the KIR3DS1*013 and KIR3DL1*004 alleles with susceptibility to ankylosing Spondylitis,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 1000–1006, 2010.
[87]  R. Díaz-Pe?a, M. A. Blanco-Gelaz, B. Suárez-álvarez et al., “Activating KIR genes are associated with ankylosing spondylitis in Asian populations,” Human Immunology, vol. 69, no. 7, pp. 437–442, 2008.
[88]  N. Tajik, F. Shahsavar, H. Poormoghim, M. F. Radjabzadeh, T. Mousavi, and A. Jalali, “KIR3DL1+HLA-B Bw4 Ile80 and KIR2DS1+HLA-C2 combinations are both associated with ankylosing spondylitis in the Iranian population,” International Journal of Immunogenetics, vol. 38, no. 5, pp. 403–409, 2011.
[89]  T. Mousavi, H. Poormoghim, M. Moradi, N. Tajik, F. Shahsavar, and B. Asadifar, “Inhibitory killer cell immunoglobulin-like receptor KIR3DL1 in combination with HLA-B Bw4iso protect against Ankylosing spondylitis,” Iranian Journal of Immunology, vol. 7, no. 2, pp. 88–95, 2010.
[90]  D. Harvey, J. J. Pointon, C. Sleator et al., “Analysis of killer immunoglobulin-like receptor genes in ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 68, no. 4, pp. 595–598, 2009.
[91]  A. G. Pratt, J. D. Isaacs, and D. L. Mattey, “Current concepts in the pathogenesis of early rheumatoid arthritis,” Best Practice and Research: Clinical Rheumatology, vol. 23, no. 1, pp. 37–48, 2009.
[92]  P. Conigliaro, R. Scrivo, G. Valesini, and R. Perricone, “Emerging role for NK cells in the pathogenesis of inflammatory arthropathies,” Autoimmunity Reviews, vol. 10, no. 10, pp. 577–581, 2011.
[93]  L. Rivino, P. Gruarin, B. H?ringer et al., “CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 565–577, 2010.
[94]  I. Comerford, M. Bunting, K. Fenix et al., “An immune paradox: how can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20: a chemokine axis balancing immunological tolerance and inflammation in autoimmune disease,” BioEssays, vol. 32, no. 12, pp. 1067–1076, 2010.
[95]  R. Varona, V. Cadenas, L. Gómez, C. Martínez-A, and G. Márquez, “CCR6 regulates CD4+ T-cell-mediated acute graft-versus-host disease responses,” Blood, vol. 106, no. 1, pp. 18–26, 2005.
[96]  Y. Kochi, Y. Okada, A. Suzuki et al., “A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility,” Nature Genetics, vol. 42, no. 6, pp. 515–519, 2010.
[97]  J. H. Ruth, S. Shahrara, C. C. Park et al., “Role of macrophage inflammatory protein-3α and its ligand CCR6 in rheumatoid arthritis,” Laboratory Investigation, vol. 83, no. 4, pp. 579–588, 2003.
[98]  C. J. Cohen, T. Karaderi, J. J. Pointon, and B. P. Wordsworth, “A CCR6 variant strongly associated with rheumatoid arthritis in two populations is not associated with ankylosing spondylitis,” Rheumatology International, 2012.
[99]  W. C. Chang, P. Y. Woon, J. C. Wei et al., “A single-nucleotide polymorphism of CCR6 (rs3093024) is associated with susceptibility to rheumatoid arthritis but not ankylosing spondylitis, in a Taiwanese population,” Journal of Rheumatology, vol. 39, no. 8, pp. 1765–1766, 2012.
[100]  E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells,” Nature Immunology, vol. 8, no. 6, pp. 639–646, 2007.
[101]  F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007.
[102]  A. Moretta and C. Bottino, “Commentary: regulated equilibrium between opposite signals: a general paradigm for T cell function?” European Journal of Immunology, vol. 34, no. 8, pp. 2084–2088, 2004.
[103]  M. Fernández-Mestre, K. Sánchez, O. Balbás et al., “Influence of CTLA-4 gene polymorphism in autoimmune and infectious diseases,” Human Immunology, vol. 70, no. 7, pp. 532–535, 2009.
[104]  M. F. Gonzalez-Escribano, R. Rodriguez, A. Valenzuela, A. Garcia, J. R. Garcia-Lozano, and A. Nunez-Roldan, “CTLA4 polymorphisms in Spanish patients with rheumatoid arthritis,” Tissue Antigens, vol. 53, no. 3, pp. 296–300, 1999.
[105]  M. R. Rodríguez, A. Nú?ez-Roldán, F. Aguilar, A. Valenzuela, A. García, and M. F. González-Escribano, “Association of the CTLA4 3′ untranslated region polymorphism with the susceptibility to rheumatoid arthritis,” Human Immunology, vol. 63, no. 1, pp. 76–81, 2002.
[106]  M. M?urer, S. Loserth, A. Kolb-M?urer et al., “A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation,” Immunogenetics, vol. 54, no. 1, pp. 1–8, 2002.
[107]  é. Toussirot, P. Saas, M. Deschamps et al., “Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity,” Arthritis Research and Therapy, vol. 11, no. 4, article R101, 2009.
[108]  G. Zhang, Z. Liu, S. Duan et al., “Association of polymorphisms of programmed cell death-1 gene with chronic hepatitis B virus infection,” Human Immunology, vol. 71, no. 12, pp. 1209–1213, 2010.
[109]  P. R. Burton, D. G. Clayton, L. R. Cardon, et al., “Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants,” Nature Genetics, vol. 39, no. 11, pp. 1329–1337, 2007.
[110]  J. D. Reveille, A. M. Sims, P. Danoy et al., “Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci,” Nature Genetics, vol. 42, no. 2, pp. 123–127, 2010.
[111]  D. M. Evans, C. C. Spencer, J. J. Pointon, et al., “Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility,” Nature Genetics, vol. 43, no. 8, pp. 761–767, 2011.
[112]  F. W. L. Tsui, N. Haroon, J. D. Reveille et al., “Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 733–736, 2010.
[113]  F. M. Pimentel-Santos, D. Ligeiro, M. Matos et al., “Association of IL23R and ERAP1 genes with ankylosing spondylitis in a Portuguese population,” Clinical and Experimental Rheumatology, vol. 27, no. 5, pp. 800–806, 2009.
[114]  D. Harvey, J. J. Pointon, D. M. Evans et al., “Investigating the genetic association between ERAP1 and ankylosing spondylitis,” Human Molecular Genetics, vol. 18, no. 21, pp. 4204–4212, 2009.
[115]  W. P. Maksymowych, R. D. Inman, D. D. Gladman, J. P. Reeve, A. Pope, and P. Rahman, “Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis,” Arthritis and Rheumatism, vol. 60, no. 5, pp. 1317–1323, 2009.
[116]  S. I. Davidson, X. Wu, Y. Liu et al., “Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population,” Arthritis and Rheumatism, vol. 60, no. 11, pp. 3263–3268, 2009.
[117]  B. Pazár, E. Sáfrány, P. Gergely, S. Szántó, Z. Szekanecz, and G. Poór, “Association of ARTS1 gene polymorphisms with ankylosing spondylitis in the Hungarian population: the rs27044 variant is associated with HLA-B*2705 subtype in Hungarian patients with ankylosing spondylitis,” Journal of Rheumatology, vol. 37, no. 2, pp. 379–384, 2010.
[118]  C. B. Choi, T. H. Kim, J. B. Jun et al., “ARTS1 polymorphisms are associated with ankylosing spondylitis in Koreans,” Annals of the Rheumatic Diseases, vol. 69, no. 3, pp. 582–584, 2010.
[119]  S. I. Davidson, Y. Liu, P. A. Danoy et al., “Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese,” Annals of the Rheumatic Diseases, vol. 70, no. 2, pp. 289–292, 2011.
[120]  W. Wu, Y. Ding, Y. Chen et al., “Susceptibility to ankylosing spondylitis: evidence for the role of ERAP1, TGFb1 and TLR9 gene polymorphisms,” Rheumatology International, vol. 32, no. 8, pp. 2517–2521, 2012.
[121]  M. Szczypiorska, A. Sánchez, N. Bartolomé et al., “ERAP1 polymorphisms and haplotypes are associated with ankylosing spondylitis susceptibility and functional severity in a Spanish population,” Rheumatology, vol. 50, no. 11, pp. 1969–1975, 2011.
[122]  C. Li, Z. Lin, Y. Xie et al., “ERAP1 is associated with ankylosing spondylitis in Han Chinese,” Journal of Rheumatology, vol. 38, no. 2, pp. 317–321, 2011.
[123]  M. Mahmoudi, A. R. Jamshidi, A. A. Amirzargar et al., “Association between endoplasmic reticulum aminopeptidase-1 (ERAP-1) and susceptibility to ankylosing spondylitis in Iran,” Iranian Journal of Allergy, Asthma, and Immunology, vol. 11, no. 4, pp. 294–300, 2012.
[124]  Y. H. Lee, S. J. Choi, J. D. Ji, and G. G. Song, “Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis,” Inflammation Research, vol. 60, no. 11, pp. 999–1003, 2011.
[125]  R. Chen, L. Yao, T. Meng, and W. Xu, “The association between seven ERAP1 polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis involving 8,530 cases and 12,449 controls,” Rheumatology International, vol. 32, no. 4, pp. 909–914, 2011.
[126]  A. Chatzikyriakidou, I. Georgiou, P. V. Voulgari, and A. A. Drosos, “The role of tumor necrosis factor (TNF)-α and TNF receptor polymorphisms in susceptibility to ankylosing spondylitis,” Clinical and Experimental Rheumatology, vol. 27, no. 4, pp. 645–648, 2009.
[127]  Y. H. Lee and G. G. Song, “Lack of association of TNF-alpha promoter polymorphisms with ankylosing spondylitis: a meta-analysis,” Rheumatology, vol. 48, no. 11, pp. 1359–1362, 2009.
[128]  B. Li, P. Wang, and H. Li, “The association between TNF-α promoter polymorphisms and ankylosing spondylitis: a meta-analysis,” Clinical Rheumatology, vol. 29, no. 9, pp. 983–990, 2010.
[129]  D. A. Poddubnyy, E. M?rker-Hermann, W. Kaluza-Schilling et al., “Relation of HLA-B27, tumor necrosis factor-α promoter gene polymorphisms, and T cell cytokine production in ankylosing spondylitis—a comprehensive genotype-phenotype analysis from an observational cohort,” Journal of Rheumatology, vol. 38, no. 11, pp. 2436–2441, 2011.
[130]  C. Romero-Sánchez, J. Londo?o, G. Delgado et al., “Association of tumor necrosis factor alpha-308 promoter polymorphism with spondyloarthritides patients in Colombia,” Rheumatology International, vol. 32, no. 7, pp. 2195–2197, 2012.
[131]  G. Vargas-Alarcón, J. Casasola-Vargas, J. M. Rodríguez-Pérez et al., “Tumor necrosis factor-α promoter polymorphisms in mexican patients with spondyloarthritis,” Human Immunology, vol. 67, no. 10, pp. 826–832, 2006.
[132]  M. H. Nicknam, M. Mahmoudi, A. A. Amirzargar, A. R. Jamshidi, N. Rezaei, and B. Nikbin, “HLA-B27 subtypes and tumor necrosis factor α promoter region polymorphism in Iranian patients with ankylosing spondylitis,” European Cytokine Network, vol. 20, no. 1, pp. 17–20, 2009.
[133]  M. Y. Shiau, M. K. Lo, C. P. Chang, T. P. Yang, K. T. Ho, and Y. H. Chang, “Association of tumour necrosis factor α promoter polymorphisms with ankylosing spondylitis in Taiwan,” Annals of the Rheumatic Diseases, vol. 66, no. 4, pp. 562–563, 2007.
[134]  J. Zú?iga, D. Torres-García, L. Jimenez et al., “PDCD1 gene polymorphisms in different Mexican ethnic groups and their role in the susceptibility to hypersensitivity pneumonitis,” Clinical Biochemistry, vol. 43, no. 10-11, pp. 929–931, 2010.
[135]  G. Kochan, T. Krojer, D. Harvey et al., “Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7745–7750, 2011.
[136]  S. Kim, S. Lee, J. Shin et al., “Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1,” Nature Immunology, vol. 12, no. 10, pp. 984–991, 2011.
[137]  Y. Goto, H. Tanji, A. Hattori, and M. Tsujimoto, “Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1,” Biochemical Journal, vol. 416, no. 1, pp. 109–115, 2008.
[138]  L. Saveanu, O. Carroll, V. Lindo et al., “Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum,” Nature Immunology, vol. 6, no. 7, pp. 689–697, 2005.
[139]  A. F. Kisselev, T. N. Akopian, K. M. Woo, and A. L. Goldberg, “The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3363–3371, 1999.
[140]  M. J. Androlewicz, K. S. Anderson, and P. Cresswell, “Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 9130–9134, 1993.
[141]  J. J. Neefjes, F. Momburg, and G. J. Hammerling, “Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter,” Science, vol. 261, no. 5122, pp. 769–771, 1993.
[142]  P. M. van Endert, R. Tampé, T. H. Meyer, R. Tisch, J. F. Bach, and H. O. McDevitt, “A sequential model for peptide binding and transport by the transporters associated with antigen processing,” Immunity, vol. 1, no. 6, pp. 491–500, 1994.
[143]  I. A. York, S. C. Chang, T. Saric et al., “The ER aminopeptidase ERAP I enhances or limits antigen presentation by trimming epitopes to 8-9 residues,” Nature Immunology, vol. 3, no. 12, pp. 1177–1184, 2002.
[144]  S. C. Chang, F. Momburg, N. Bhutani, and A. L. Goldberg, “The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 47, pp. 17107–17112, 2005.
[145]  X. Cui, F. Hawari, S. Alsaaty et al., “Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding,” Journal of Clinical Investigation, vol. 110, no. 4, pp. 515–526, 2002.
[146]  X. Cui, F. N. Rouhani, F. Hawari, and S. J. Levine, “Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding,” Journal of Immunology, vol. 171, no. 12, pp. 6814–6819, 2003.
[147]  X. Cui, F. N. Rouhani, F. Hawari, and S. J. Levine, “An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 28677–28685, 2003.
[148]  N. Haroon, F. W. L. Tsui, B. Chiu, H. W. O. Tsui, and R. D. Inman, “Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms,” Journal of Rheumatology, vol. 37, no. 9, pp. 1907–1910, 2010.
[149]  Y. Goto, K. Ogawa, A. Hattori, and M. Tsujimoto, “Secretion of endoplasmic reticulum aminopeptidase 1 is involved in the activation of macrophages induced by lipopolysaccharide and interferon-γ,” Journal of Biological Chemistry, vol. 286, no. 24, pp. 21906–21914, 2011.
[150]  M. A. Brown, “Progress in the genetics of ankylosing spondylitis,” Briefings in Functional Genomics, vol. 10, no. 5, pp. 249–257, 2011.
[151]  W. H. Fridman, C. Bonnerot, M. Daeron, S. Amigorena, J. L. Teillaud, and C. Sautes, “Structural bases of Fcγ receptor functions,” Immunological Reviews, vol. 125, pp. 49–76, 1992.
[152]  A. Yada, S. Ebihara, K. Matsumura et al., “Accelerated antigen presentation and elicitation of humoral response in vivo by FcγRIIB- and FcγRI/III-mediated immune complex uptake,” Cellular Immunology, vol. 225, no. 1, pp. 21–32, 2003.
[153]  J. E. Gessner, H. Heiken, A. Tamm, and R. E. Schmidt, “The IgG Fc receptor family,” Annals of Hematology, vol. 76, no. 6, pp. 231–248, 1998.
[154]  F. Nimmerjahn and J. V. Ravetch, “Fcγ receptors as regulators of immune responses,” Nature Reviews Immunology, vol. 8, no. 1, pp. 34–47, 2008.
[155]  T. Takai, “Fc receptors and their role in immune regulation and autoimmunity,” Journal of Clinical Immunology, vol. 25, no. 1, pp. 1–18, 2005.
[156]  R. N. Stefanescu, M. Olferiev, Y. I. Liu, and L. Pricop, “Inhibitory Fc gamma receptors: from gene to disease,” Journal of Clinical Immunology, vol. 24, no. 4, pp. 315–326, 2004.
[157]  N. E. Phillips and D. C. Parker, “Fc-dependent inhibition of mouse B cell activation by whole anti-μ antibodies,” Journal of Immunology, vol. 130, no. 2, pp. 602–606, 1983.
[158]  N. R. Pritchard, A. J. Cutler, S. Uribe, S. J. Chadban, B. J. Morley, and K. G. C. Smith, “Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII,” Current Biology, vol. 10, no. 4, pp. 227–230, 2000.
[159]  K. Su, X. Li, J. C. Edberg, J. Wu, P. Ferguson, and R. P. Kimberly, “A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function,” Journal of Immunology, vol. 172, no. 11, pp. 7192–7199, 2004.
[160]  M. C. Blank, R. N. Stefanescu, E. Masuda et al., “Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus,” Human Genetics, vol. 117, no. 2-3, pp. 220–227, 2005.
[161]  Z. H. Duan, F. M. Pan, Z. Zeng et al., “The FCGR2B rs10917661 polymorphism may confer susceptibility to ankylosing spondylitis in Han Chinese: a casecontrol study,” Scandinavian Journal of Rheumatology, vol. 41, no. 3, pp. 219–222, 2012.
[162]  Ma. de Jesús Durán-Avelar, N. Vibanco-Pérez, A. N. Rodríguez-Ocampo, J. M. Agraz-Cibrian, S. Pe?a-Virgen, and J. F. Zambrano-Zaragoza, “Humoral immune response to Salmonella sntigens and polymorphisms in receptors for the Fc of IgG in patients with ankylosing spondylitis,” in Clinical and Molecular Advances in Ankylosing Spondylitis, J. Bruges-Armas, Ed., Intech, 2012, http://www.intechopen.com/books/clinical-and-molecular-advances-in-ankylosing-spondylitis/humoral-immune-response-to-salmonella-antigens-and-polymorphisms-in-receptors-for-the-fc-of-igg-in-p.
[163]  J. F. Zambrano-Zaragoza, D. A. M. de Jesus, A. N. Rodríguez-Ocampo et al., “The 30-kDa band from Salmonella typhimurium: IgM, IgA and IgG antibody response in patients with ankylosing spondylitis,” Rheumatology, vol. 48, no. 7, pp. 748–754, 2009.
[164]  A. Hjelholt, T. Carlsen, B. Deleuran et al., “Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis,” PloS One, vol. 8, no. 2, Article ID e56210, 2013.
[165]  M. J. Morales-Lara, P. Conesa-Zamora, M. S. Garca-Simón et al., “Association between the FCGR3A V158F polymorphism and the clinical response to infliximab in rheumatoid arthritis and spondyloarthritis patients,” Scandinavian Journal of Rheumatology, vol. 39, no. 6, pp. 518–520, 2010.
[166]  F. van Hauwermeiren, R. E. Vandenbroucke, and C. Libert, “Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1,” Cytokine and Growth Factor Reviews, vol. 22, no. 5-6, pp. 311–319, 2011.
[167]  P. P. Tak and J. R. Kalden, “Advances in rheumatology: new targeted therapeutics,” Arthritis Research and Therapy, vol. 13, no. 1, article S5, 2011.
[168]  C. T. Chou, A. P. Huo, H. N. Chang, C. Y. Tsai, W. S. Chen, and H. P. Wang, “Cytokine production from peripheral blood mononuclear cells in patients with ankylosing spondylitis and their first-degree relatives,” Archives of Medical Research, vol. 38, no. 2, pp. 190–195, 2007.
[169]  D. Wendling and C. Prati, “Biologic agents for treating ankylosing spondylitis: beyond TNFα antagonists,” Joint Bone Spine, vol. 78, no. 6, pp. 542–544, 2011.
[170]  J. Braun, A. Deodhar, B. Dijkmans et al., “Efficacy and safety of infliximab in patients with ankylosing spondylitis over a two-year period,” Arthritis and Rheumatism, vol. 59, no. 9, pp. 1270–1278, 2008.
[171]  D. van der Heijde, M. H. Schiff, J. Sieper et al., “Adalimumab effectiveness for the treatment of ankylosing spondylitis is maintained for up to 2 years: long-term results from the ATLAS trial,” Annals of the Rheumatic Diseases, vol. 68, no. 6, pp. 922–929, 2009.
[172]  I. Saougou, T. E. Markatseli, P. V. Voulgari, and A. A. Drosos, “Maintained clinical response of infliximab treatment in ankylosing spondylitis: a 6-year long-term study,” Joint Bone Spine, vol. 77, no. 4, pp. 325–329, 2010.
[173]  S. Arends, A. Spoorenberg, P. M. Houtman et al., “The effect of three years of TNF alpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis: a prospective longitudinal observational cohort study,” Arthritis Research & Therapy, vol. 14, no. 2, article R98, 2012.
[174]  K. Y. Kang, K. Y. Lee, S. K. Kwok et al., “The change of bone mineral density according to treatment agents in patients with ankylosing spondylitis,” Joint Bone Spine, vol. 78, no. 2, pp. 188–193, 2011.
[175]  E. Gallo, T. Cabaleiro, M. Román, F. Abad-Santos, and E. Daudén, “Study of genetic polymorphisms in the tumor necrosis factor α promoter region in Spanish patients with psoriasis,” Actas Dermo-Sifiliograficas, vol. 103, no. 4, pp. 301–307, 2012.
[176]  N. Kothari, J. Bogra, H. Abbas et al., “Tumor Necrosis Factor gene polymorphism results in high TNF level in sepsis and septic shock,” Cytokine, vol. 61, no. 2, pp. 676–681, 2013.
[177]  A. G. Wilson, J. A. Symons, T. L. Mcdowell, H. O. Mcdevitt, and G. W. Duff, “Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3195–3199, 1997.
[178]  M. Seitz, U. Wirthmüller, B. M?ller, and P. M. Villiger, “The -308 tumour necrosis factor-α gene polymorphism predicts therapeutic response to TNFα-blockers in rheumatoid arthritis and spondyloarthritis patients,” Rheumatology, vol. 46, no. 1, pp. 93–96, 2007.
[179]  J. Zalevsky, T. Secher, S. A. Ezhevsky et al., “Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection,” Journal of Immunology, vol. 179, no. 3, pp. 1872–1883, 2007.
[180]  R. A. Black, C. T. Rauch, C. J. Kozlosky et al., “A metalloproteinase disintegrin that releases tumour-necrosis factor-? from cells,” Nature, vol. 385, no. 6618, pp. 729–733, 1997.
[181]  X. Chen and J. J. Oppenheim, “Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity,” FEBS Letters, vol. 585, no. 23, pp. 3611–3618, 2011.
[182]  M. Grell, E. Douni, H. Wajant et al., “The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor,” Cell, vol. 83, no. 5, pp. 793–802, 1995.
[183]  G. Chen and D. V. Goeddel, “TNF-R1 signaling: a beautiful pathway,” Science, vol. 296, no. 5573, pp. 1634–1635, 2002.
[184]  J. Cuenca, M. Cuchacovich, C. Pérez et al., “The -308 polymorphism in the tumour necrosis factor (TNF) gene promoter region and ex vivo lipopolysaccharide-induced TNF expression and cytotoxic activity in Chilean patients with rheumatoid arthritis,” Rheumatology, vol. 42, no. 2, pp. 308–313, 2003.
[185]  X. Chen, X. Wu, Q. Zhou, O. M. Howard, M. G. Netea, and J. J. Oppenheim, “TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment,” Journal of Immunology, vol. 190, no. 3, pp. 1076–1084, 2013.
[186]  F. S. Kleijwegt, S. Laban, G. Duinkerken et al., “Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells,” Journal of Immunology, vol. 185, no. 3, pp. 1412–1418, 2010.
[187]  E. G. Corona-Sanchez, J. F. Mu?oz-Valle, L. Gonzalez-Lopez et al., “-383 A/C tumor necrosis factor receptor 1 polymorphism and ankylosing spondylitis in Mexicans: a preliminary study,” Rheumatology International, vol. 32, no. 8, pp. 2565–2568, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413