全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preoperative White Blood Cell Count and Risk of 30-Day Readmission after Cardiac Surgery

DOI: 10.1155/2013/781024

Full-Text   Cite this paper   Add to My Lib

Abstract:

Approximately 1 in 5 patients undergoing cardiac surgery are readmitted within 30 days of discharge. Among the primary causes of readmission are infection and disease states susceptible to the inflammatory cascade, such as diabetes, chronic obstructive pulmonary disease, and gastrointestinal complications. Currently, it is not known if a patient’s baseline inflammatory state measured by crude white blood cell (WBC) counts could predict 30-day readmission. We collected data from 2,176 consecutive patients who underwent cardiac surgery at seven hospitals. Patient readmission data was abstracted from each hospital. The independent association with preoperative WBC count was determined using logistic regression. There were 259 patients readmitted within 30 days, with a median time of readmission of 9 days (IQR 4–16). Patients with elevated WBC count at baseline (10,000–12,000 and >12,000?mm3) had higher 30-day readmission than those with lower levels of WBC count prior to surgery (15% and 18% compared to 10%–12%, ). Adjusted odds ratios were 1.42 (0.86, 2.34) for WBC counts 10,000–12,000 and 1.81 (1.03, 3.17) for WBC count?>?12,000. We conclude that WBC count measured prior to cardiac surgery as a measure of the patient’s inflammatory state could aid clinicians and continuity of care management teams in identifying patients at heightened risk of 30-day readmission after discharge from cardiac surgery. 1. Introduction Approximately one in every five hospitalized patients is readmitted within 30 days [1]. Currently, two-thirds of US hospitals have reimbursement penalties for higher than expected 30-day readmission rates from the Center for Medicaid and Medicare Services [2, 3]. It is expected that similar penalties will be extended to other procedures and diagnoses including cardiac surgery. In preparation for the expansion of the penalty system in the USA and to improve prediction of patients at high risk of postdischarge complications leading to readmissions or premature death, risk factors must be identified early in the hospital course to align the best possible quality and continuity of care. Currently, a validated risk model for predicting readmissions after cardiac surgery is not available and few risk factors for readmission are known. Recent evidence from California reported an association between infection and higher rates of 30-day readmission after cardiac surgery [4]. However, identification of infection after discharge without routine monitoring of a postcardiac surgical patient is problematic. What is needed is for clinical care teams to

References

[1]  S. F. Jencks, M. V. Williams, and E. A. Coleman, “Rehospitalizations among patients in the medicare fee-for-service program,” The New England Journal of Medicine, vol. 360, no. 14, pp. 1418–1428, 2009.
[2]  The Patient Protection and Affordability Care (PPAC) Act, Section 3025, 2011.
[3]  J. Angelelli, D. Gifford, O. Intrator, P. Gozalo, L. Laliberte, and V. Mor, “Access to postacute nursing home care before and after the BBA,” Health Affairs, vol. 21, no. 5, pp. 254–264, 2002.
[4]  Z. Li, E. J. Armstrong, J. P. Parker, B. Danielsen, and P. S. Romano, “Hospital variation in readmission after coronary artery bypass surgery in California,” Circulation, vol. 5, no. 5, pp. 729–737, 2012.
[5]  M. Madjid, I. Awan, J. T. Willerson, and S. W. Casscells, “Leukocyte count and coronary heart disease: implications for risk assessment,” Journal of the American College of Cardiology, vol. 44, no. 10, pp. 1945–1956, 2004.
[6]  J. Chen, R. P. Wildman, L. L. Hamm et al., “Association between inflammation and insulin resistance in U.S. nondiabetic adults: results from the Third National Health and Nutrition Examination Survey,” Diabetes Care, vol. 27, no. 12, pp. 2960–2965, 2004.
[7]  W. Q. Gan, S. F. P. Man, A. Senthilselvan, and D. D. Sin, “Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis,” Thorax, vol. 59, no. 7, pp. 574–580, 2004.
[8]  D. N. Reddan, P. S. Klassen, L. A. Szczech et al., “White blood cells as a novel mortality predictor in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 18, no. 6, pp. 1167–1173, 2003.
[9]  R. C. Bone, R. A. Balk, F. B. Cerra et al., “Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine,” Chest, vol. 101, no. 6, pp. 1644–1655, 1992.
[10]  R. C. Landis, J. M. Murkin, D. A. Stump et al., “Consensus statement: minimal criteria for reporting the systemic inflammatory response to cardiopulmonary bypass,” Heart Surgery Forum, vol. 13, no. 2, pp. E116–E123, 2010.
[11]  L. J. Dacey, J. DeSimone, J. H. Braxton et al., “Preoperative white blood cell count and mortality and morbidity after coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 76, no. 3, pp. 760–764, 2003.
[12]  R. Mehran, S. J. Pocock, E. Nikolsky et al., “A risk score to predict bleeding in patients with acute coronary syndromes,” Journal of the American College of Cardiology, vol. 55, no. 23, pp. 2556–2566, 2010.
[13]  J. Chung, M. A. Corriere, R. K. Veeraswamy et al., “Risk factors for late mortality after endovascular repair of the thoracic aorta,” Journal of Vascular Surgery, vol. 52, no. 3, pp. 549–554, 2010.
[14]  P. A. Linden, B. Y. Yeap, M. Y. Chang et al., “Morbidity of lung resection after prior lobectomy: results from the Veterans Affairs National Surgical Quality Improvement Program,” Annals of Thoracic Surgery, vol. 83, no. 2, pp. 425–432, 2007.
[15]  M. Madjid and O. Fatemi, “Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update,” Texas Heart Institute Journal, vol. 40, no. 1, pp. 17–29, 2013.
[16]  G. D. Friedman, A. L. Klatsky, and A. B. Siegelaub, “The leukocyte count as a predictor of myocardial infarction,” The New England Journal of Medicine, vol. 290, no. 23, pp. 1275–1278, 1974.
[17]  Y. Maekawa, T. Anzai, T. Yoshikawa et al., “Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 241–246, 2002.
[18]  Y. Gao, G.-X. Tong, X.-W. Zhang et al., “Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention,” International Heart Journal, vol. 51, no. 2, pp. 75–81, 2010.
[19]  H. V. Barron, C. P. Cannon, S. A. Murphy, E. Braunwald, and C. M. Gibson, “Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy,” Circulation, vol. 102, no. 19, pp. 2329–2334, 2000.
[20]  J. Butler, G. M. Rocker, and S. Westaby, “Inflammatory response to cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 55, no. 2, pp. 552–559, 1993.
[21]  R. C. Landis and R. J. de Silva, “The systemic inflammatory response to cardiopulmonary bypass,” in Core Topics in Cardiac Anaesthesia, J. H. Mackay and J. E. Arrowsmith, Eds., Cambridge University Press, Cambridge, UK, 2012.
[22]  K. M. Taylor, “SIRS—the systemic inflammatory response syndrome after cardiac operations,” Annals of Thoracic Surgery, vol. 61, no. 6, pp. 1607–1608, 1996.
[23]  R. C. Landis, J. R. Brown, J. M. Murkin, D. S. Likosky, and R. A. Baker, “An evidence based review of pharmaceutical interventions to limit the systemic inflammatory response in coronary surgery,” Heart Surgery Forum, vol. 11, no. 5, pp. 1–12, 2008.
[24]  G. Pilz, S. Kaab, E. Kreuzer, and K. Werdan, “Evaluation of definitions and parameters for sepsis assessment in patients after cardiac surgery,” Infection, vol. 22, no. 1, pp. 8–17, 1994.
[25]  F. Kerbaul, C. Guidon, P. J. Lejeune, M. Mollo, T. Mesana, and F. Gouin, “Hyperprocalcitonemia is related to noninfectious postoperative severe systemic inflammatory response syndrome associated with cardiovascular dysfunction after coronary artery bypass graft surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 16, no. 1, pp. 47–53, 2002.
[26]  M. Hensel, T. Volk, W. D. D?cke et al., “Hyperprocalcitonemia in patients with noninfectious SIRS and pulmonary dysfunction associated with cardiopulmonary bypass,” Anesthesiology, vol. 89, no. 1, pp. 93–104, 1998.
[27]  R. S. Carel and J. Eviatar, “Factors affecting leukocyte count in healthy adults,” Preventive Medicine, vol. 14, no. 5, pp. 607–619, 1985.
[28]  J. Litmathe, U. Boeken, G. Bohlen, D. Gursoy, C. Sucker, and P. Feindt, “Systemic inflammatory response syndrome after extracorporeal circulation: a predictive algorithm for the patient at risk,” Hellenic Journal of Cardiology, vol. 52, no. 6, pp. 493–500, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133