全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of the Immune Response in Age-Related Macular Degeneration

DOI: 10.1155/2013/348092

Full-Text   Cite this paper   Add to My Lib

Abstract:

Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries; with the aging population, the negative health impacts and costs of the disease will increase dramatically over the next decade. Although the exact cause of AMD is unknown, genetic studies have implicated the complement system as well as other immune responses in disease pathogenesis and severity. Furthermore, histologic studies have shown the presence of macrophages, lymphocytes, and mast cells, as well as fibroblasts, in both atrophic lesions and with retinal neovascularization. This review summarizes discussions from the fifth annual conference of the Arnold and Mabel Beckman Initiative for Macular Research by the Inflammation and Immune Response Task Force. These deliberations focused on the role of inflammatory immune responses, including complement, inflammasomes, adaptive immune responses, and para-inflammation, unanswered questions and studies to address these questions, and potential immune-related therapeutic targets for AMD. 1. Introduction Age-related macular degeneration (AMD) is the leading cause of central vision loss in developed countries. The most recent data suggest that more than 3 million people in the United States will be affected by the disease by 2020 [1]. The disease affects the choriocapillaris, Bruch’s membrane and the retinal pigment epithelium, with dysfunction and death of overlying photoreceptors. In addition to age, risk factors for the disease include both environmental and epidemiologic factors. Specific disease associations include smoking, light exposure, obesity, and race [2]. Recent genetic studies have implicated roles for the immune system, particularly abnormalities in the complement system, in disease pathogenesis, and severity. Although patients with AMD do not have signs of overt ocular inflammation, histologic studies have shown the presence of macrophages, lymphocytes, and mast cells, as well as fibroblasts, associated with both atrophic lesions and with neovascularization of the retina [3]. Importantly, the retina is a highly metabolically active tissue, with requirements to mediate photoreceptor turnover. As the retina ages, it may be less able to handle these metabolic requirements. Immunologically active deposits called drusen that contain lipids, complement, and other potentially immune activating substances may act as additional triggers for immune responses in the eye. Other inflammatory initiators include oxidative stress and secondary mediators of inflammation such as cytokines. On the other hand, the

References

[1]  D. S. Friedman, B. J. O'Colmain, B. Mu?oz et al., “Prevalence of age-related macular degeneration in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 564–572, 2004.
[2]  L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, “Age-related macular degeneration,” The Lancet, vol. 379, no. 9827, pp. 1728–1738, 2012.
[3]  P. L. Penfold, M. C. Madigan, M. C. Gillies, and J. M. Provis, “Immunological and aetiological aspects of macular degeneration,” Progress in Retinal and Eye Research, vol. 20, no. 3, pp. 385–414, 2001.
[4]  D. A. Carter and A. D. Dick, “CD200 maintains microglial potential to migrate in adult human retinal explant model,” Current Eye Research, vol. 28, no. 6, pp. 427–436, 2004.
[5]  C. Broderick, R. M. Hoek, J. V. Forrester, J. Liversidge, J. D. Sedgwick, and A. D. Dick, “Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis,” The American Journal of Pathology, vol. 161, no. 5, pp. 1669–1677, 2002.
[6]  K. Saijo and C. K. Glass, “Microglial cell origin and phenotypes in health and disease,” Nature Reviews Immunology, vol. 11, no. 11, pp. 775–787, 2011.
[7]  C. Broderick, L. Duncan, N. Taylor, and A. D. Dick, “IFN-γ and LPS-mediated IL-10-dependent suppression of retinal microglial activation,” Investigative Ophthalmology and Visual Science, vol. 41, no. 9, pp. 2613–2622, 2000.
[8]  E. H. Hughes, F. C. Schlichtenbrede, C. C. Murphy et al., “Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism,” Experimental Eye Research, vol. 78, no. 6, pp. 1077–1084, 2004.
[9]  A. D. Dick, D. Carter, M. Robertson et al., “Control of myeloid activity during retinal inflammation,” Journal of Leukocyte Biology, vol. 74, no. 2, pp. 161–166, 2003.
[10]  R. Medzhitov, “Origin and physiological roles of inflammation,” Nature, vol. 454, no. 7203, pp. 428–435, 2008.
[11]  H. Xu, M. Chen, and J. V. Forrester, “Para-inflammation in the aging retina,” Progress in Retinal and Eye Research, vol. 28, no. 5, pp. 348–368, 2009.
[12]  S. Raychaudhuri, O. Iartchouk, K. Chin et al., “A rare penetrant mutation in CFH confers high risk of age-related macular degeneration,” Nature Genetics, vol. 43, no. 12, pp. 1232–1236, 2011.
[13]  A. Richards, D. Kavanagh, and J. P. Atkinson, “Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration,” Advances in Immunology, vol. 96, pp. 141–177, 2007.
[14]  T. H. J. Goodship, “Factor H genotype-phenotype correlations: lessons from aHUS, MPGN II, and AMD,” Kidney International, vol. 70, no. 1, pp. 12–13, 2006.
[15]  P. J. Lachmann and R. A. G. Smith, “Taking complement to the clinic—has the time finally come?” Scandinavian Journal of Immunology, vol. 69, no. 6, pp. 471–478, 2009.
[16]  J. Tuo, S. Grob, K. Zhang, and C. C. Chan, “Genetics of immunological and inflammatory components in age-related macular degeneration,” Ocular Immunology and Inflammation, vol. 20, no. 1, pp. 27–36, 2012.
[17]  J. R. Sparrow, K. Ueda, and J. Zhou, “Complement dysregulation in AMD: RPE-Bruch's membrane-choroid,” Molecular Aspects of Medicine, vol. 33, no. 4, pp. 436–445, 2012.
[18]  P. F. Zipfel, N. Lauer, and C. Skerka, “The role of complement in AMD,” Advances in Experimental Medicine and Biology, vol. 703, pp. 9–24, 2010.
[19]  K. M. Gehrs, J. R. Jackson, E. N. Brown, R. Allikmets, and G. S. Hageman, “Complement, age-related macular degeneration and a vision of the future,” Archives of Ophthalmology, vol. 128, no. 3, pp. 349–358, 2010.
[20]  D. H. Anderson, M. J. Radeke, N. B. Gallo et al., “The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited,” Progress in Retinal and Eye Research, vol. 29, no. 2, pp. 95–112, 2010.
[21]  S. Khandhadia, V. Cipriani, J. R. Yates, and A. J. Lotery, “Age-related macular degeneration and the complement system,” Immunobiology, vol. 217, no. 2, pp. 127–146, 2012.
[22]  I. Bhutto and G. Lutty, “Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex,” Molecular Aspects of Medicine, vol. 33, no. 4, pp. 295–317, 2012.
[23]  D. D. G. Despriet, C. C. W. Klaver, J. C. M. Witteman et al., “Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration,” Journal of the American Medical Association, vol. 296, no. 3, pp. 301–309, 2006.
[24]  A. L. Fett, M. M. Hermann, P. S. Muether, B. Kirchhof, and S. Fauser, “Immunohistochemical localization of complement regulatory proteins in the human retina,” Histol Histopathol, vol. 27, no. 3, pp. 357–364, 2012.
[25]  R. Sofat, J. P. Casas, A. R. Webster et al., “Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype,” International Journal of Epidemiology, vol. 41, no. 1, pp. 250–262, 2012.
[26]  J. L. Haines, M. A. Hauser, S. Schmidt et al., “Complement factor H variant increases the risk of age-related macular degeneration,” Science, vol. 308, no. 5720, pp. 419–421, 2005.
[27]  A. O. Edwards, R. Ritter, K. J. Abel, A. Manning, C. Panhuysen, and L. A. Farrer, “Complement factor H polymorphism and age-related macular degeneration,” Science, vol. 308, no. 5720, pp. 421–424, 2005.
[28]  R. J. Klein, C. Zeiss, E. Y. Chew et al., “Complement factor H polymorphism in age-related macular degeneration,” Science, vol. 308, no. 5720, pp. 385–389, 2005.
[29]  G. S. Hageman, D. H. Anderson, L. V. Johnson et al., “A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7227–7232, 2005.
[30]  T. Montes, A. Tortajada, B. P. Morgan, S. R. De Córdoba, and C. L. Harris, “Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4366–4371, 2009.
[31]  A. P. Sj?berg, L. A. Trouw, S. J. Clark et al., “The factor H variant associated with age-related macular degeneration (His-384) and the non-disease-associated form bind differentially to C-reactive protein, fibromodulin, DNA, and necrotic cells,” Journal of Biological Chemistry, vol. 282, no. 15, pp. 10894–10900, 2007.
[32]  R. J. Ormsby, S. Ranganathan, J. C. Tong et al., “Functional and structural implications of the complement factor H Y402H polymorphism associated with age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 49, no. 5, pp. 1763–1770, 2008.
[33]  S. J. Clark, R. Perveen, S. Hakobyan et al., “Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch's membrane in human retina,” The Journal of Biological Chemistry, vol. 285, no. 39, pp. 30192–30202, 2010.
[34]  M. Laine, H. Jarva, S. Seitsonen et al., “Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein,” The Journal of Immunology, vol. 178, no. 6, pp. 3831–3836, 2007.
[35]  G. S. Hageman, P. J. Luthert, N. H. Victor Chong, L. V. Johnson, D. H. Anderson, and R. F. Mullins, “An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration,” Progress in Retinal and Eye Research, vol. 20, no. 6, pp. 705–732, 2001.
[36]  D. H. Anderson, R. F. Mullins, G. S. Hageman, and L. V. Johnson, “A role for local inflammation in the formation of drusen in the aging eye,” American Journal of Ophthalmology, vol. 134, no. 3, pp. 411–431, 2002.
[37]  R. F. Mullins, N. Aptsiauri, and G. S. Hageman, “Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis,” Eye, vol. 15, no. 3, pp. 390–395, 2001.
[38]  L. V. Johnson, W. P. Leitner, M. K. Staples, and D. H. Anderson, “Complement activation and inflammatory processes in drusen formation and age related macular degeneration,” Experimental Eye Research, vol. 73, no. 6, pp. 887–896, 2001.
[39]  R. D. Horstmann, H. J. Sievertsen, J. Knobloch, and V. A. Fischetti, “Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 5, pp. 1657–1661, 1988.
[40]  J. D. Lambris, D. Ricklin, and B. V. Geisbrecht, “Complement evasion by human pathogens,” Nature Reviews Microbiology, vol. 6, no. 2, pp. 132–142, 2008.
[41]  N. Lauer, M. Mihlan, A. Hartmann et al., “Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His402 risk variant,” The Journal of Immunology, vol. 187, no. 8, pp. 4374–4383, 2011.
[42]  S. J. Clark, V. A. Higman, B. Mulloy et al., “His-384 allotypic variant of factor H associated with age-related macular degeneration has different heparin binding properties from the non-disease-associated form,” The Journal of Biological Chemistry, vol. 281, no. 34, pp. 24713–24720, 2006.
[43]  J. G. Hollyfield, V. L. Bonilha, M. E. Rayborn et al., “Oxidative damage-induced inflammation initiates age-related macular degeneration,” Nature Medicine, vol. 14, no. 2, pp. 194–198, 2008.
[44]  P. T. Johnson, K. E. Betts, M. J. Radeke, G. S. Hageman, D. H. Anderson, and L. V. Johnson, “Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17456–17461, 2006.
[45]  P. J. Lachmann, “The amplification loop of the complement pathways,” Advances in Immunology, vol. 104, pp. 115–149, 2009.
[46]  J. M. Seddon, R. Reynolds, J. Maller, J. A. Fagerness, M. J. Daly, and B. Rosner, “Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables,” Investigative Ophthalmology and Visual Science, vol. 50, no. 5, pp. 2044–2053, 2009.
[47]  R. Reynolds, M. E. Hartnett, J. P. Atkinson, P. C. Giclas, B. Rosner, and J. M. Seddon, “Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes,” Investigative Ophthalmology and Visual Science, vol. 50, no. 12, pp. 5818–5827, 2009.
[48]  H. P. N. Scholl, P. C. Issa, M. Walier et al., “Systemic complement activation in age-related macular degeneration,” PLoS ONE, vol. 3, no. 7, Article ID e2593, 2008.
[49]  J. Wang, K. Ohno-Matsui, T. Yoshida et al., “Amyloid-β up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration,” Journal of Cellular Physiology, vol. 220, no. 1, pp. 119–128, 2009.
[50]  I. Droz, I. Mantel, A. Ambresin, M. Faouzi, D. F. Schorderet, and F. L. Munier, “Genotype-phenotype correlation of age-related macular degeneration: influence of complement factor H polymorphism,” British Journal of Ophthalmology, vol. 92, no. 4, pp. 513–517, 2008.
[51]  T. Sepp, J. C. Khan, D. A. Thurlby et al., “Complement factor H variant Y402H is a major risk determinant for geographic atrophy and choroidal neovascularization in smokers and nonsmokers,” Investigative Ophthalmology and Visual Science, vol. 47, no. 2, pp. 536–540, 2006.
[52]  J. M. Seddon, S. George, B. Rosner, and N. Rifai, “Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers,” Archives of Ophthalmology, vol. 123, no. 6, pp. 774–782, 2005.
[53]  K. M. Gehrs, D. H. Anderson, L. V. Johnson, and G. S. Hageman, “Age-related macular degeneration—emerging pathogenetic and therapeutic concepts,” Annals of Medicine, vol. 38, no. 7, pp. 450–471, 2006.
[54]  G. S. Hageman, L. S. Hancox, A. J. Taiber et al., “Extended haplotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: characterization, ethnic distribution and evolutionary implications,” Annals of Medicine, vol. 38, no. 8, pp. 592–604, 2006.
[55]  J. Maller, S. George, S. Purcell et al., “Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration,” Nature Genetics, vol. 38, no. 9, pp. 1055–1059, 2006.
[56]  K. M. Nishiguchi, T. R. Yasuma, D. Tomida et al., “C9-R95X polymorphism in patients with neovascular age-related macular degeneration,” Investigative Ophthalmology & Visual Science, vol. 53, no. 1, pp. 508–512, 2012.
[57]  J. B. Maller, J. A. Fagerness, R. C. Reynolds, B. M. Neale, M. J. Daly, and J. M. Seddon, “Variation in complement factor 3 is associated with risk of age-related macular degeneration,” Nature Genetics, vol. 39, no. 10, pp. 1200–1201, 2007.
[58]  M. Heurich, R. Martínez-Barricarte, N. J. Francis et al., “Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, pp. 8761–8766, 2011.
[59]  J. A. Fagerness, J. B. Maller, B. M. Neale, R. C. Reynolds, M. J. Daly, and J. M. Seddon, “Variation near complement factor I is associated with risk of advanced AMD,” European Journal of Human Genetics, vol. 17, no. 1, pp. 100–104, 2009.
[60]  M. Nozaki, B. J. Raisler, E. Sakurai et al., “Drusen complement components C3a and C5a promote choroidal neovascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2328–2333, 2006.
[61]  B. Rohrer, B. Coughlin, K. Kunchithapautham et al., “The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization,” Molecular Immunology, vol. 48, no. 6-7, pp. e1–e8, 2011.
[62]  N. S. Bora, S. Kaliappan, P. Jha et al., “Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H,” The Journal of Immunology, vol. 177, no. 3, pp. 1872–1878, 2006.
[63]  N. S. Bora, S. Kaliappan, P. Jha et al., “CD59, a complement regulatory protein, controls choroidal neovascularization in a mouse model of wet-type age-related macular degeneration,” The Journal of Immunology, vol. 178, no. 3, pp. 1783–1790, 2007.
[64]  N. S. Bora, P. Jha, V. V. Lyzogubov et al., “Recombinant membrane-targeted form of CD59 inhibits the growth of choroidal neovascular complex in mice,” The Journal of Biological Chemistry, vol. 285, no. 44, pp. 33826–33833, 2010.
[65]  S. M. Cashman, K. Ramo, and R. Kumar-Singh, “A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration,” PLoS ONE, vol. 6, no. 4, Article ID e19078, 2011.
[66]  Y. Huang, F. Qiao, C. Atkinson, V. M. Holers, and S. Tomlinson, “A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury,” The Journal of Immunology, vol. 181, no. 11, pp. 8068–8076, 2008.
[67]  B. Rohrer, Q. Long, B. Coughlin et al., “A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3056–3064, 2009.
[68]  S. B. Bressler, “Introduction: understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration,” Ophthalmology, vol. 116, no. 10, pp. S1–S7, 2009.
[69]  O. Gross, C. J. Thomas, G. Guarda, and J. Tschopp, “The inflammasome: an integrated view,” Immunological Reviews, vol. 243, no. 1, pp. 136–151, 2011.
[70]  J. K. Dowling and L. A. O'Neill, “Biochemical regulation of the inflammasome,” Critical Reviews in Biochemistry and Molecular Biology, vol. 47, no. 5, pp. 424–443, 2012.
[71]  P. Menu and J. E. Vince, “The NLRP3 inflammasome in health and disease: the good, the bad and the ugly,” Clinical & Experimental Immunology, vol. 166, no. 1, pp. 1–15, 2011.
[72]  A. K. Mankan, A. Kubarenko, and V. Hornung, “Immunology in clinic review series, focus on autoinflammatory diseases: inflammasomes: mechanisms of activation,” Clinical & Experimental Immunology, vol. 167, no. 3, pp. 369–381, 2012.
[73]  S. L. Doyle, M. Campbell, E. Ozaki et al., “NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components,” Nature Medicine, vol. 18, no. 5, pp. 791–798, 2012.
[74]  V. Tarallo, Y. Hirano, B. D. Gelfand, et al., “DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88,” Cell, vol. 149, no. 4, pp. 847–859, 2012.
[75]  M. E. Benoit, E. V. Clarke, P. Morgado, D. A. Fraser, and A. J. Tenner, “Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells,” The Journal of Immunology, vol. 188, no. 11, pp. 5682–5693, 2012.
[76]  W. A. Tseng, T. Thein, K. Kinnunen et al., “NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration,” Investigative Ophthalmology & Visual Science, vol. 54, no. 1, pp. 110–120, 2013.
[77]  K. Nakahira, J. A. Haspel, V. A. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011.
[78]  C. S. Shi, K. Shenderov, N. N. Huang et al., “Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction,” Nature Immunology, vol. 13, no. 3, pp. 255–263, 2012.
[79]  M. C. Kenney, M. Chwa, S. R. Atilano et al., “Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration,” PLoS ONE, vol. 8, no. 1, Article ID e54339, 2013.
[80]  N. Patel, M. Ohbayashi, A. K. Nugent et al., “Circulating anti-retinal antibodies as immune markers in age-related macular degeneration,” Immunology, vol. 115, no. 3, pp. 422–430, 2005.
[81]  S. Cherepanoff, P. Mitchell, J. J. Wang, and M. C. Gillies, “Retinal autoantibody profile in early age-related macular degeneration: preliminary findings from the blue mountains eye study,” Clinical and Experimental Ophthalmology, vol. 34, no. 6, pp. 590–595, 2006.
[82]  K. Morohoshi, A. M. Goodwin, M. Ohbayashi, and S. J. Ono, “Autoimmunity in retinal degeneration: autoimmune retinopathy and age-related macular degeneration,” Journal of Autoimmunity, vol. 33, no. 3-4, pp. 247–254, 2009.
[83]  K. Morohoshi, M. Ohbayashi, N. Patel, V. Chong, A. C. Bird, and S. J. Ono, “Identification of anti-retinal antibodies in patients with age-related macular degeneration,” Experimental and Molecular Pathology, vol. 93, no. 2, pp. 193–199, 2012.
[84]  K. Morohoshi, N. Patel, M. Ohbayashi et al., “Serum autoantibody biomarkers for age-related macular degeneration and possible regulators of neovascularization,” Experimental and Molecular Pathology, vol. 92, no. 1, pp. 64–73, 2012.
[85]  B. Dhillon, A. F. Wright, A. Tufail et al., “Complement factor H autoantibodies and age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 51, no. 11, pp. 5858–5863, 2010.
[86]  J. G. Hollyfield, V. L. Perez, and R. G. Salomon, “A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 290–298, 2010.
[87]  B. Liu, L. Wei, C. Meyerle et al., “Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration,” Journal of Translational Medicine, vol. 9, p. 111, 2011.
[88]  L. Wei, B. Liu, J. Tuo et al., “Hypomethylation of the IL17RC promoter associates with age-related macular degeneration,” Cell Reports, vol. 2, no. 5, pp. 1151–1158, 2012.
[89]  T. W. Olsen and X. Feng, “The minnesota grading system of eye bank eyes for age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 45, no. 12, pp. 4484–4490, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133