全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gab Docking Proteins in Cardiovascular Disease, Cancer, and Inflammation

DOI: 10.1155/2013/141068

Full-Text   Cite this paper   Add to My Lib

Abstract:

The docking proteins of the Grb2-associated binder (Gab) family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2) domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation. 1. Introduction The mammalian Grb2-associated binder (Gab) proteins are homologs of Drosophila DOS (Daughter Of Sevenless) and Caenorhabditis elegans SOC-1 (Suppressor Of Clear). These proteins define a family of docking proteins closely related to the insulin receptor substrate (IRS-1, IRS-2, IRS-3), fibroblast growth factor substrate (FRS2), linker of T cell (LAT), and downstream of kinase (Dok) families [1]. In contrast to adaptor proteins such as growth factor receptor bound protein 2 (Grb2) and Shc, which are usually smaller and often function as a molecular bridge between two proteins in the assembly of larger protein complexes, docking proteins contain a membrane-targeting region at the N-terminus, binding sites for src homology 3 (SH3) domain-containing proteins, and multiple tyrosine phosphorylation sites that, when phosphorylated, function as binding sites for the src homology 2 (SH2) domains of a variety of effectors. Consequently, the docking proteins are significantly larger than adaptor proteins. In addition, docking proteins usually contain one or more moieties that mediate their recruitment to plasma membranes through protein-protein or protein-lipid interactions. Their

References

[1]  F. U. Wohrle, R. J. Daly, and T. Brummer, “Function, regulation and pathological roles of the Gab/DOS docking proteins,” Cell Communication and Signaling, vol. 7, article 22, 2009.
[2]  H. Gu and B. G. Neel, “The “Gab” in signal transduction,” Trends in Cell Biology, vol. 13, no. 3, pp. 122–130, 2003.
[3]  Y. Liu and L. R. Rohrschneider, “The gift of Gab,” FEBS Letters, vol. 515, no. 1–3, pp. 1–7, 2002.
[4]  K. Nishida and T. Hirano, “The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors,” Cancer Science, vol. 94, no. 12, pp. 1029–1033, 2003.
[5]  M. Holgado-Madruga, D. R. Emlet, D. K. Moscatello, A. K. Godwin, and A. J. Wong, “A Grb2-associated docking protein in EGF- and insulin-receptor signalling,” Nature, vol. 379, no. 6565, pp. 560–564, 1996.
[6]  E. D. Fixman, M. Holgado-Madruga, L. Nguyen et al., “Efficient cellular transformation by the Met oncoprotein requires a functional Grb2 binding site and correlates with phosphorylation of the Grb2-associated proteins, Cb1 and Gab1,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 20167–20172, 1997.
[7]  K. M. Weidner, S. Di Cesare, M. Sachs, V. Brinkmann, J. Behrens, and W. Birchmeier, “Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis,” Nature, vol. 384, no. 6605, pp. 173–176, 1996.
[8]  H. Gu, J. C. Pratt, S. J. Burakoff, and B. G. Neel, “Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation,” Molecular Cell, vol. 2, no. 6, pp. 729–740, 1998.
[9]  K. Nishida, Y. Yoshida, M. Itoh et al., “Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors,” Blood, vol. 93, no. 6, pp. 1809–1816, 1999.
[10]  C. Zhao, D. H. Yu, R. Shen, and G. S. Feng, “Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1,” Journal of Biological Chemistry, vol. 274, no. 28, pp. 19649–19654, 1999.
[11]  I. Wolf, B. J. Jenkins, Y. Liu et al., “Gab3, a new DOS/Gab family member, facilitates macrophage differentiation,” Molecular and Cellular Biology, vol. 22, no. 1, pp. 231–244, 2002.
[12]  R. Herbst, P. M. Carroll, J. D. Allard, J. Schilling, T. Raabe, and M. A. Simon, “Daughter of sevenless is a substrate of the phosphotyrosine phosphatase corkscrew and functions during sevenless signaling,” Cell, vol. 85, no. 6, pp. 899–909, 1996.
[13]  T. Raabe, J. Riesgo-Escovar, X. Liu et al., “DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in drosophila,” Cell, vol. 85, no. 6, pp. 911–920, 1996.
[14]  J. L. Schutzman, C. Z. Borland, J. C. Newman, M. K. Robinson, M. Kokel, and M. J. Stern, “The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction,” Molecular and Cellular Biology, vol. 21, no. 23, pp. 8104–8116, 2001.
[15]  S. J. Isakoff, T. Cardozo, J. Andreev et al., “Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast,” EMBO Journal, vol. 17, no. 18, pp. 5374–5387, 1998.
[16]  C. R. Maroun, D. K. Moscatello, M. A. Naujokas, M. Holgado-Madruga, A. J. Wong, and M. Park, “A conserved inositol phospholipid binding site within the pleckstrin homology domain of the Gab1 docking protein is required for epithelial morphogenesis,” Journal of Biological Chemistry, vol. 274, no. 44, pp. 31719–31726, 1999.
[17]  C. R. Maroun, M. Holgado-Madruga, I. Royal et al., “The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the Met receptor tyrosine kinase,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 1784–1799, 1999.
[18]  G. A. Rodrigues, M. Falasca, Z. Zhang, S. H. Ong, and J. Schlessinger, “A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling,” Molecular and Cellular Biology, vol. 20, no. 4, pp. 1448–1459, 2000.
[19]  C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. Vande Woude, “Met, metastasis, motility and more,” Nature Reviews Molecular Cell Biology, vol. 4, no. 12, pp. 915–925, 2003.
[20]  L. S. Lock, M. M. Frigault, C. Saucier, and M. Park, “Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the met receptor kinase domain,” Journal of Biological Chemistry, vol. 278, no. 32, pp. 30083–30090, 2003.
[21]  U. Schaeper, R. Vogel, J. Chmielowiec, J. Huelsken, M. Rosario, and W. Birchmeier, “Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15376–15381, 2007.
[22]  L. S. Lock, C. R. Maroun, M. A. Naujokas, and M. Park, “Distinct recruitment and function of Gab1 and Gab2 in met receptor-mediated epithelial morphogenesis,” Molecular Biology of the Cell, vol. 13, no. 6, pp. 2132–2146, 2002.
[23]  U. Schaeper, N. H. Gehring, K. P. Fuchs, M. Sachs, B. Kempkes, and W. Birchmeier, “Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses,” Journal of Cell Biology, vol. 149, no. 7, pp. 1419–1432, 2000.
[24]  B. G. Neel, H. Gu, and L. Pao, “The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling,” Trends in Biochemical Sciences, vol. 28, no. 6, pp. 284–293, 2003.
[25]  J. M. Cunnick, L. Mei, C. A. Doupnik, and J. Wu, “Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 24380–24387, 2001.
[26]  B. S. Bausenwein, M. Schmidt, B. Mielke, and T. Raabe, “In vivo functional analysis of the Daughter of Sevenless protein in receptor tyrosine kinase signaling,” Mechanisms of Development, vol. 90, no. 2, pp. 205–215, 2000.
[27]  R. Herbst, X. Zhang, J. Qin, and M. A. Simon, “Recruitment of the protein tyrosine phosphatase CSW by DOS is an essential step during signaling by the Sevenless receptor tyrosine kinase,” EMBO Journal, vol. 18, no. 24, pp. 6950–6961, 1999.
[28]  J. M. Cunnick, J. F. Dorsey, T. Munoz-Antonia, L. Mei, and J. Wu, “Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor,” Journal of Biological Chemistry, vol. 275, no. 18, pp. 13842–13848, 2000.
[29]  C. R. Maroun, M. A. Naujokas, M. Holgado-Madruga, A. J. Wong, and M. Park, “The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase,” Molecular and Cellular Biology, vol. 20, no. 22, pp. 8513–8525, 2000.
[30]  M. Dance, A. Montagner, A. Yart et al., “The adaptor protein Gab1 couples the stimulation of vascular endothelial growth factor receptor-2 to the activation of phosphoinositide 3-kinase,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 23285–23295, 2006.
[31]  M. Laramé, C. Chabot, M. Cloutier et al., “The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation,” Journal of Biological Chemistry, vol. 282, no. 11, pp. 7758–7769, 2007.
[32]  W. Shioyama, Y. Nakaoka, K. Higuchi et al., “Docking protein gab1 is an essential component of postnatal angiogenesis after ischemia via HGF/c-met signaling,” Circulation Research, vol. 108, no. 6, pp. 664–675, 2011.
[33]  Y. Nakaoka, K. Nishida, Y. Fujio et al., “Activation of gp130 transduces hypertrophic signal through interaction of scaffolding/docking protein Gab1 with tyrosine phosphatase SHP2 in cardiomyocytes,” Circulation Research, vol. 93, no. 3, pp. 221–229, 2003.
[34]  Y. Nakaoka, W. Shioyama, S. Kunimoto et al., “SHP2 mediates gp130-dependent cardiomyocyte hypertrophy via negative regulation of skeletal alpha-actin gene,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 2, pp. 157–164, 2010.
[35]  T. Brummer, D. Schramek, V. M. Hayes et al., “Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 626–637, 2006.
[36]  M. Yu, J. Luo, W. Yang et al., “The scaffolding adapter Gab2, via Shp-2, regulates Kit-evoked mast cell proliferation by activating the Rac/JNK pathway,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 28615–28626, 2006.
[37]  Y. Ren, S. Meng, L. Mei, Z. J. Zhao, R. Jove, and J. Wu, “Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor,” Journal of Biological Chemistry, vol. 279, no. 9, pp. 8497–8505, 2004.
[38]  S. Q. Zhang, W. Yang, M. I. Kontaridis et al., “Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment,” Molecular Cell, vol. 13, no. 3, pp. 341–355, 2004.
[39]  Y. M. Agazie and M. J. Hayman, “Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7875–7886, 2003.
[40]  M. Itoh, Y. Yoshida, K. Nishida, M. Narimatsu, M. Hibi, and T. Hirano, “Role of Gab l in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation,” Molecular and Cellular Biology, vol. 20, no. 10, pp. 3695–3704, 2000.
[41]  M. Sachs, H. Brohmann, D. Zechner et al., “Essential role of Gab1 for signaling by the c-Met receptor in vivo,” Journal of Cell Biology, vol. 150, no. 6, pp. 1375–1384, 2000.
[42]  T. Koyama, Y. Nakaoka, Y. Fujio et al., “Interaction of scaffolding adaptor protein Gab1 with tyrosine phosphatase SHP2 negatively regulates IGF-I-dependent myogenic differentiation via the ERK1/2 signaling pathway,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 24234–24244, 2008.
[43]  Y. Zhang, E. Diaz-Flores, G. Li et al., “Abnormal hematopoiesis in Gab2 mutant mice,” Blood, vol. 110, no. 1, pp. 116–124, 2007.
[44]  H. Gu, K. Saito, L. D. Klaman et al., “Essential role for Gab2 in the allergic response,” Nature, vol. 412, no. 6843, pp. 186–190, 2001.
[45]  K. Nishida, L. Wang, E. Morii et al., “Requirement of Gab2 for mast cell development and KitL/c-Kit signaling,” Blood, vol. 99, no. 5, pp. 1866–1869, 2002.
[46]  F. M. Batliwalla, E. C. Baechler, X. Xiao et al., “Peripheral blood gene expression profiling in rheumatoid arthritis,” Genes and Immunity, vol. 6, no. 5, pp. 388–397, 2005.
[47]  T. Wada, T. Nakashima, A. J. Oliveira-Dos-Santos et al., “The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis,” Nature Medicine, vol. 11, no. 4, pp. 394–399, 2005.
[48]  K. Nishida, S. Yamasaki, A. Hasegawa, A. Iwamatsu, H. Koseki, and T. Hirano, “Gab2, via PI-3K, regulates ARF1 in FcεRI-mediated granule translocation and mast cell degranulation,” Journal of Immunology, vol. 187, no. 2, pp. 932–941, 2011.
[49]  M. Seiffert, J. M. Custodio, I. Wolf et al., “Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent,” Molecular and Cellular Biology, vol. 23, no. 7, pp. 2415–2424, 2003.
[50]  E. A. Bard-Chapeau, J. Yuan, N. Droin et al., “Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection,” Molecular and Cellular Biology, vol. 26, no. 12, pp. 4664–4674, 2006.
[51]  E. A. Bard-Chapeau, A. L. Hevener, S. Long, E. E. Zhang, J. M. Olefsky, and G. S. Feng, “Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action,” Nature Medicine, vol. 11, no. 5, pp. 567–571, 2005.
[52]  Y. Nakaoka, K. Nishida, M. Narimatsu et al., “Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling,” Journal of Clinical Investigation, vol. 117, no. 7, pp. 1771–1781, 2007.
[53]  T. Weng, F. Mao, Y. Wang et al., “Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis,” Journal of Cell Science, vol. 123, no. 5, pp. 682–689, 2010.
[54]  C. Suri, P. F. Jones, S. Patan et al., “Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis,” Cell, vol. 87, no. 7, pp. 1171–1180, 1996.
[55]  D. L. Brutsaert, “Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity,” Physiological Reviews, vol. 83, no. 1, pp. 59–115, 2003.
[56]  P. Carmeliet, “Angiogenesis in health and disease,” Nature Medicine, vol. 9, no. 6, pp. 653–660, 2003.
[57]  Y. Lu, Y. Xiong, Y. Huo et al., “Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2957–2962, 2011.
[58]  J. Zhao, W. Wang, C. H. Ha et al., “Endothelial Grb2-associated binder 1 is crucial for postnatal angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, pp. 1016–1023, 2011.
[59]  K. Higuchi, Y. Nakaoka, W. Shioyama et al., “Endothelial Gab1 deletion accelerates angiotensin II-dependent vascular inflammation and atherosclerosis in apolipoprotein E knockout mice,” Circulation Journal, vol. 76, no. 8, pp. 2031–2040, 2012.
[60]  G. B. Atkins and M. K. Jain, “Role of Krüppel-like transcription factors in endothelial biology,” Circulation Research, vol. 100, no. 12, pp. 1686–1695, 2007.
[61]  S. Itoh, F. Yoshitake, H. Narita, K. Ishihara, and S. Ebisu, “Gab2 plays distinct roles in bone homeostasis at different time points,” Journal of Bone and Mineral Metabolism, vol. 25, no. 2, pp. 81–85, 2007.
[62]  M. Bentires-Alj, S. G. Gil, R. Chan et al., “A role for the scaffolding adapter GAB2 in breast cancer,” Nature Medicine, vol. 12, no. 1, pp. 114–121, 2006.
[63]  L. A. Brown, S. E. Kalloger, M. A. Miller et al., “Amplification of 11q13 in ovarian carcinoma,” Genes Chromosomes and Cancer, vol. 47, no. 6, pp. 481–489, 2008.
[64]  S. H. Lee, E. G. Jeong, S. W. Nam, J. Y. Lee, N. J. Yoo, and S. H. Lee, “Increased expression of Gab2, a scaffolding adaptor of the tyrosine kinase signalling, in gastric carcinomas,” Pathology, vol. 39, no. 3, pp. 326–329, 2007.
[65]  A. Zatkova, C. Schoch, F. Speleman et al., “GAB2 is a novel target of 11q amplification in AML/MDS,” Genes Chromosomes and Cancer, vol. 45, no. 9, pp. 798–807, 2006.
[66]  R. J. Daly, H. Gu, J. Parmar et al., “The docking protein Gab2 is overexpressed and estrogen regulated in human breast cancer,” Oncogene, vol. 21, no. 33, pp. 5175–5181, 2002.
[67]  B. Horst, S. K. Gruvberger-Saal, B. D. Hopkins et al., “Gab2-mediated signaling promotes melanoma metastasis,” American Journal of Pathology, vol. 174, no. 4, pp. 1524–1533, 2009.
[68]  M. Sattler, M. G. Mohi, Y. B. Pride et al., “Critical role for Gab2 in transformation by BCR/ABL,” Cancer Cell, vol. 1, no. 5, pp. 479–492, 2002.
[69]  M. G. Mohi, I. R. Williams, C. R. Dearolf et al., “Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations,” Cancer Cell, vol. 7, no. 2, pp. 179–191, 2005.
[70]  J. P. Eder, G. F. Vande Woude, S. A. Boerner, and P. M. Lorusso, “Novel therapeutic inhibitors of the c-Met signaling pathway in cancer,” Clinical Cancer Research, vol. 15, no. 7, pp. 2207–2214, 2009.
[71]  K. Mood, C. Saucier, Y. S. Bong, H. S. Lee, M. Park, and I. O. Daar, “Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic Met receptor,” Molecular Biology of the Cell, vol. 17, no. 9, pp. 3717–3728, 2006.
[72]  G. S. Kapoor, Y. Zhan, G. R. Johnson, and D. M. O'Rourke, “Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappa B activation through Gab1 in glioblastoma cells,” Molecular and Cellular Biology, vol. 24, no. 2, pp. 823–836, 2004.
[73]  A. E. Moran, D. H. Hunt, S. H. Javid, M. Redston, A. M. Carothers, and M. M. Bertagnolli, “Apc deficiency is associated with increased Egfr activity in the intestinal enterocytes and adenomas of C57BL/6J-Min/+ mice,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 43261–43272, 2004.
[74]  Y. Aoki, T. Niihori, Y. Narumi, S. Kure, and Y. Matsubara, “The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders,” Human Mutation, vol. 29, no. 8, pp. 992–1006, 2008.
[75]  E. Denayer and E. Legius, “What's new in the neuro-cardio-facial-cutaneous syndromes?” European Journal of Pediatrics, vol. 166, no. 11, pp. 1091–1098, 2007.
[76]  G. Chan, D. Kalaitzidis, T. Usenko et al., “Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis,” Blood, vol. 113, no. 18, pp. 4414–4424, 2009.
[77]  C. M. Niemeyer and C. P. Kratz, “Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options,” British Journal of Haematology, vol. 140, no. 6, pp. 610–624, 2008.
[78]  M. I. Kontaridis, K. D. Swanson, F. S. David, D. Barford, and B. G. Neel, “PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects,” Journal of Biological Chemistry, vol. 281, no. 10, pp. 6785–6792, 2006.
[79]  N. Hanna, A. Montagner, W. H. Lee et al., “Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1,” FEBS Letters, vol. 580, no. 10, pp. 2477–2482, 2006.
[80]  M. Hatakeyama, “Helicobacter pylori CagA—a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins,” Microbes and Infection, vol. 5, no. 2, pp. 143–150, 2003.
[81]  M. Poppe, S. M. Feller, G. R?mer, and S. Wessler, “Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility,” Oncogene, vol. 26, no. 24, pp. 3462–3472, 2007.
[82]  M. Selbach, S. Moese, C. R. Hauck, T. F. Meyer, and S. Backert, “Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 6775–6778, 2002.
[83]  N. Tegtmeyer, S. Wessler, and S. Backert, “Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis,” FEBS Journal, vol. 278, no. 8, pp. 1190–1202, 2011.
[84]  C. M. Botham, A. M. Wandler, and K. Guillemin, “A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic gab adaptor,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000064, 2008.
[85]  T. Hirota, A. Takahashi, M. Kubo et al., “Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population,” Nature Genetics, vol. 43, no. 9, pp. 893–896, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413