全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Regulatory Mechanisms of Pathogenicity and Virulence to Combat MDR in Candida albicans

DOI: 10.1155/2013/240209

Full-Text   Cite this paper   Add to My Lib

Abstract:

Continuous deployment of antifungals in treating infections caused by dimorphic opportunistic pathogen Candida albicans has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed multidrug resistance (MDR). Despite the current understanding of major factors which contribute to MDR mechanisms, there are many lines of evidence suggesting that it is a complex interplay of multiple factors which may be contributed by still unknown mechanisms. Coincidentally with the increased usage of antifungal drugs, the number of reports for antifungal drug resistance has also increased which further highlights the need for understanding novel molecular mechanisms which can be explored to combat MDR, namely, ROS, iron, hypoxia, lipids, morphogenesis, and transcriptional and signaling networks. Considering the worrying evolution of MDR and significance of C. albicans being the most prevalent human fungal pathogen, this review summarizes these new regulatory mechanisms which could be exploited to prevent MDR development in C. albicans as established from recent studies. 1. Introduction In the last decades, the incidence of fungal infections has increased dramatically due to the rise in the number of immunocompromised patients. The most prevalent fungal pathogen of humans is Candida albicans which ranks as the fourth most common cause of hospital acquired infectious disease and is the primary cause of systemic candidiasis, with mortality rates approaching 50% [1]. The dimorphic opportunistic pathogen, C. albicans, is normally a commensal organism in humans, but when the host is unable to mount an adequate immune response, as in AIDS, organ transplant, diabetes, or in cancer patients, it results in mucosal, cutaneous, or invasive mycoses [2, 3]. Prolonged usage of antifungals in treating infections caused by C. albicans has led to the emergence of azole resistance. This acquired azole resistance in clinical isolates of C. albicans mostly results in cross-resistance to many unrelated drugs, a phenomenon termed multidrug resistance (MDR) [4–6]. MDR is a serious complication during treatment of opportunistic fungal infections which poses grave concern given the limited number of clinically useful antifungal drugs available [7, 8]. Fungal species have evolved a multitude of mechanisms to survive exposure to antifungal drugs and some of them include an overexpression or mutations in ERG11, encoding the target enzyme of azoles lanosterol 14α-demethylase [4, 5, 9, 10], an over expression of the drug efflux pumps encoding

References

[1]  M. A. Pfaller and D. J. Diekema, “Epidemiology of invasive candidiasis: a persistent 873 public health problem,” Clinical Microbiology Reviews, vol. 20, no. 1, pp. 133–163, 2007.
[2]  R. A. Calderone, Candida and Candidiasis, American Society for Microbiology Press, Washington, DC, USA, 2002.
[3]  F. C. Odds, Candida and Candidosis: A Review and Bibliography, London, UK, 1988.
[4]  T. C. White, K. A. Marr, and R. A. Bowden, “Clinical, cellular, and molecular factors that contribute to antifungal drug resistance,” Clinical Microbiology Reviews, vol. 11, no. 2, pp. 382–402, 1998.
[5]  T. C. White, S. Holleman, F. Dy, L. F. Mirels, and D. A. Stevens, “Resistance mechanisms in clinical isolates of Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1704–1713, 2002.
[6]  R. Franz, S. L. Kelly, D. C. Lamb, D. E. Kelly, M. Ruhnke, and J. Morschh?user, “Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 12, pp. 3065–3072, 1998.
[7]  J. B. Anderson, “Evolution of antifungal-drug resistance: mechanisms and pathogen fitness,” Nature Reviews Microbiology, vol. 3, no. 7, pp. 547–556, 2005.
[8]  L. E. Cowen and W. J. Steinbach, “Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance,” Eukaryotic Cell, vol. 7, no. 5, pp. 747–764, 2008.
[9]  D. C. Lamb, D. E. Kelly, W.-H. Schunck et al., “The mutation T315A in Candida albicans sterol 14α-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity,” Journal of Biological Chemistry, vol. 272, no. 9, pp. 5682–5688, 1997.
[10]  R. Prasad, N. Gupta, and M. Gaur, “Molecular basis of antifungal resistance in pathogenic fungi,” in Pathogenic Fungi—Host Interactions and Emerging Strategies For Control, G. San-Blas and R. A. Calderone, Eds., pp. 357–414, Caister Academic Press, Norfolk, UK, 2004.
[11]  G. D. Albertson, M. Niimi, R. D. Cannon, and H. F. Jenkinson, “Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 12, pp. 2835–2841, 1996.
[12]  A. Kohli, S. Smriti, K. Mukhopadhyay, A. Rattan, and R. Prasad, “In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 4, pp. 1046–1052, 2002.
[13]  D. Sanglard, F. Ischer, M. Monod, and J. Bille, “Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene,” Microbiology, vol. 143, no. 2, pp. 405–416, 1997.
[14]  R. Ben-Yaacov, S. Knoller, G. A. Caldwell, J. M. Becker, and Y. Koltin, “Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 4, pp. 648–652, 1994.
[15]  V. Gupta, A. Kohli, S. Krishnamurthy et al., “Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation,” Current Genetics, vol. 34, no. 3, pp. 192–199, 1998.
[16]  S. S. Pao, I. T. Paulsen, and M.H. Saier Jr., “Major facilitator superfamily,” Microbiology and Molecular Biology Reviews, vol. 62, pp. 1–34, 1998.
[17]  G. G. Perrone, S.-X. Tan, and I. W. Dawes, “Reactive oxygen species and yeast apoptosis,” Biochimica et Biophysica Acta, vol. 1783, no. 7, pp. 1354–1368, 2008.
[18]  N. Vázquez, T. J. Walsh, D. Friedman, S. J. Chanock, and C. A. Lyman, “Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans,” Infection and Immunity, vol. 66, no. 1, pp. 145–150, 1998.
[19]  C.-S. Hwang, G.-E. Rhie, S.-T. Kim et al., “Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans,” Biochimica et Biophysica Acta, vol. 1427, no. 2, pp. 245–255, 1999.
[20]  D. Kobayashi, K. Kondo, N. Uehara et al., “Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 10, pp. 3113–3117, 2002.
[21]  X.-Z. Wu, A.-X. Cheng, L.-M. Sun, S.-J. Sun, and H.-X. Lou, “Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans,” Biochimica et Biophysica Acta, vol. 1790, no. 8, pp. 770–777, 2009.
[22]  Y. Xu, Y. Wang, L. Yan et al., “Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans: endogenous ROS augmentation,” Journal of Proteome Research, vol. 8, no. 11, pp. 5296–5304, 2009.
[23]  J. L. Da Rosa, V. L. Boyartchuk, L. J. Zhu, and P. D. Kaufman, “Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1594–1599, 2010.
[24]  A. Shirai, S. Ueta, H. Maseda, H. Kourai, and T. Omasa, “Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast,” Biocontrol Science and Technology, vol. 17, no. 2, pp. 77–82, 2012.
[25]  H. Miao, L. Zhao, C. Li, Q. Shang, H. Lu, and Z. Fu, “Inhibitory effect of shikonin on Candida albicans growth,” Biological & Pharmaceutical Bulletin, vol. 35, no. 11, pp. 1956–1963, 2012.
[26]  R. S. Almeida, D. Wilson, and B. Hube, “Candida albicans iron acquisition within the host,” FEMS Yeast Research, vol. 9, no. 7, pp. 1000–1012, 2009.
[27]  J. J. Bullen, H. J. Rogers, P. B. Spalding, and C. G. Ward, “Natural resistance, iron and infection: a challenge for clinical medicine,” Journal of Medical Microbiology, vol. 55, no. 3, pp. 251–258, 2006.
[28]  M. A. Fischbach, H. Lin, D. R. Liu, and C. T. Walsh, “How pathogenic bacteria evade mammalian sabotage in the battle for iron,” Nature Chemical Biology, vol. 2, no. 3, pp. 132–138, 2006.
[29]  I. Nyilasi, T. Papp, M. Takó, E. Nagy, and C. Vágv?lgyi, “Iron gathering of opportunistic pathogenic fungi: a mini review,” Acta Microbiologica et Immunologica Hungarica, vol. 52, no. 2, pp. 185–197, 2005.
[30]  J. Spacek, P. Jilek, V. Buchta, M. Forstl, M. Hronek, and M. Holeckova, “The serum levels of calcium, magnesium, iron and zinc in patients with recurrent vulvovaginal candidosis during attack, remission and in healthy controls,” Mycoses, vol. 48, no. 6, pp. 391–395, 2005.
[31]  E. D. Weinberg, “The role of iron in protozoan and fungal infectious diseases,” Journal of Eukaryotic Microbiology, vol. 46, no. 3, pp. 231–238, 1999.
[32]  D. Radisky and J. Kaplan, “Regulation of transition metal transport across the yeast plasma membrane,” Journal of Biological Chemistry, vol. 274, no. 8, pp. 4481–4484, 1999.
[33]  M. E. Kuipers, H. G. De Vries, M. C. Eikelboom, D. K. F. Meijer, and P. J. Swart, “Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, pp. 2635–2641, 1999.
[34]  M. E. Kuipers, L. Beljaars, N. Van Beek et al., “Conditions influencing the in vitro antifungal activity of lactoferrin combined with antimycotics against clinical isolates of Candida: impact on the development of buccal preparations of lactoferrin,” APMIS, vol. 110, no. 4, pp. 290–298, 2002.
[35]  M. E. Kuipers, J. Heegsma, H. I. Bakker et al., “Design and fungicidal activity of mucoadhesive lactoferrin tablets for the treatment of oropharyngeal candidosis,” Drug Delivery, vol. 9, no. 1, pp. 31–38, 2002.
[36]  T. Prasad, A. Chandra, C. K. Mukhopadhyay, and R. Prasad, “Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 11, pp. 3597–3606, 2006.
[37]  S. Hameed, S. Dhamgaye, A. Singh, S. K. Goswami, and R. Prasad, “Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans,” PLoS ONE, vol. 6, no. 4, Article ID e18684, 2011.
[38]  S. Dhamgaye, F. Devaux, R. Manoharlal et al., “In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 1, pp. 495–506, 2012.
[39]  T. Kobayashi, H. Kakeya, T. Miyazaki et al., “Synergistic antifungal effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis,” Japanese Journal of Infectious Diseases, vol. 64, no. 4, pp. 292–296, 2011.
[40]  R. P. Singh, H. K. Prasad, I. Sinha, N. Agarwal, and K. Natarajan, “Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans,” Journal of Biological Chemistry, vol. 286, no. 28, pp. 25154–25170, 2011.
[41]  S. Brena, J. Cabezas-Olcoz, M. D. Moragues et al., “Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 7, pp. 3156–3163, 2011.
[42]  H. E. Kaba, M. Nimtz, P. P. Müller, and U. Bilitewski, “Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability,” BMC Microbiology, vol. 13, article 16, 2013.
[43]  N. Hosogaya, T. Miyazaki, M. Nagi, K. Tanabe, A. Minematsu, and Y. Nagayoshi, “The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in candida glabrata,” FEMS Yeast Research, vol. 13, no. 4, pp. 411–421, 2013.
[44]  T. Srikantha, K. J. Daniels, C. Pujol, E. Kim, and D. R. Soll, “Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability and drug-resistance of Candida albicans a/α biofilms,” Eukaryot Cell, 2013.
[45]  K. M. Comerford, T. J. Wallace, J. Karhausen, N. A. Louis, M. C. Montalto, and S. P. Colgan, “Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene,” Cancer Research, vol. 62, no. 12, pp. 3387–3394, 2002.
[46]  K. M. Comerford and S. P. Colgan, “Assessing oxygen sensitivity of the multidrug resistance (MDR) gene,” Methods in Enzymology, vol. 381, pp. 376–387, 2004.
[47]  K. M. Comerford, E. P. Cummins, and C. T. Taylor, “c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1α-dependent P-glycoprotein expression in hypoxia,” Cancer Research, vol. 64, no. 24, pp. 9057–9061, 2004.
[48]  C. K. Mukhopadhyay, B. Mazumder, and P. L. Fox, “Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency,” Journal of Biological Chemistry, vol. 275, no. 28, pp. 21048–21054, 2000.
[49]  E. R. Setiadi, T. Doedt, F. Cottier, C. Noffz, and J. F. Ernst, “Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks,” Journal of Molecular Biology, vol. 361, no. 3, pp. 399–411, 2006.
[50]  G. J. Sosinska, P. W. J. de Groot, M. J. T. de Mattos et al., “Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions,” Microbiology, vol. 154, no. 2, pp. 510–520, 2008.
[51]  A. J. P. Brown and N. A. R. Gow, “Regulatory networks controlling Candida albicans morphogenesis,” Trends in Microbiology, vol. 7, no. 8, pp. 333–338, 1999.
[52]  A. Sonneborn, D. P. Bockmühl, and J. F. Ernst, “Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator,” Infection and Immunity, vol. 67, no. 10, pp. 5514–5517, 1999.
[53]  C. Stichternoth and J. F. Ernst, “Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans,” Applied and Environmental Microbiology, vol. 75, no. 11, pp. 3663–3672, 2009.
[54]  J. Bonhomme, M. Chauvel, S. Goyard, P. Roux, T. Rossignol, and C. D'Enfert, “Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans,” Molecular Microbiology, vol. 80, no. 4, pp. 995–1013, 2011.
[55]  A. P. Carvalho, L. C. Gursky, R. T. Rosa et al., “Non-steroidal anti-inflammatory drugs may modulate the protease activity of Candida albicans,” Microbial Pathogenesis, vol. 49, no. 6, pp. 315–322, 2010.
[56]  J. M. Synnott, A. Guida, S. Mulhern-Haughey, D. G. Higgins, and G. Butler, “Regulation of the hypoxic response in Candida albicans,” Eukaryotic Cell, vol. 9, no. 11, pp. 1734–1746, 2010.
[57]  C. Stichternoth, A. Fraund, E. Setiadi, L. Giasson, A. Vecchiarelli, and J. F. Ernst, “Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans,” Eukaryotic Cell, vol. 10, no. 4, pp. 502–511, 2011.
[58]  J. F. Ernst and D. Tielker, “Responses to hypoxia in fungal pathogens,” Cellular Microbiology, vol. 11, no. 2, pp. 183–190, 2009.
[59]  N. Grahl, K. M. Shepardson, D. Chung, and R. A. Cramer, “Hypoxia and fungal pathogenesis: to air or not to air?” Eukaryotic Cell, vol. 11, no. 5, pp. 560–570, 2012.
[60]  L. Romani, F. Bistoni, and P. Puccetti, “Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts,” Current Opinion in Microbiology, vol. 6, no. 4, pp. 338–343, 2003.
[61]  P. R. Gujjar, M. Finucane, and B. Larsen, “The effect of estradiol on Candida albicans growth,” Annals of Clinical and Laboratory Science, vol. 27, no. 2, pp. 151–156, 1997.
[62]  X. Zhang, M. Essmann, E. T. Burt, and B. Larsen, “Estrogen effects on Candida albicans: a potential virulence-regulating mechanism,” Journal of Infectious Diseases, vol. 181, no. 4, pp. 1441–1446, 2000.
[63]  N. D. Madani, P. J. Malloy, P. Rodriguez-Pombo, A. V. Krishnan, and D. Feldman, “Candida albicans estrogen-binding protein gene encodes an oxidoreductase that is inhibited by estradiol,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 3, pp. 922–926, 1994.
[64]  P. J. Malloy, X. Zhao, N. D. Madani, and D. Feldman, “Cloning and expression of the gene from Candida albicans that encodes a high-affinity corticosteroid-binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1902–1906, 1993.
[65]  M. Das and A. Datta, “Steroid binding protein(s) in yeasts,” Biochemistry International, vol. 11, no. 2, pp. 171–176, 1985.
[66]  M. De Micheli, J. Bille, C. Schueller, and D. Sanglard, “A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance,” Molecular Microbiology, vol. 43, no. 5, pp. 1197–1214, 2002.
[67]  N. Kamani, N. Akhtar Gaur, S. Jha et al., “SRE1 and SRE2 are two specific steroid-responsive modules of candida drug resistance gene I (CDRI) promoter,” Yeast, vol. 21, no. 3, pp. 219–239, 2004.
[68]  A. T. Coste, M. Karababa, F. Ischer, J. Bille, and D. Sanglard, “TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2,” Eukaryotic Cell, vol. 3, no. 6, pp. 1639–1652, 2004.
[69]  D. Banerjee, B. Pillai, N. Karnani, G. Mukhopadhyay, and R. Prasad, “Genome-wide expression profile of steroid response in saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 317, no. 2, pp. 406–413, 2004.
[70]  K. M. Barnes, B. Dickstein, G. B. Cutler Jr., T. Fojo, and S. E. Bates, “Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells,” Biochemistry, vol. 35, no. 15, pp. 4820–4827, 1996.
[71]  M. Sukhai and M. Piquette-Miller, “Regulation of the multidrug resistance genes by stress signals,” Journal of Pharmacy & Pharmaceutical Sciences, vol. 3, no. 2, pp. 268–280, 2000.
[72]  S. Labialle, L. Gayet, E. Marthinet, D. Rigal, and L. G. Baggetto, “Transcriptional regulators of the human multidrug resistance 1 gene: recent views,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 943–948, 2002.
[73]  D. Banerjee, G. Lelandais, S. Shukla et al., “Responses of pathogenic and nonpathogenic yeast species to steroids reveal the functioning and evolution of multidrug resistance transcriptional networks,” Eukaryotic Cell, vol. 7, no. 1, pp. 68–77, 2008.
[74]  S. Gogoi, K. Shekarrao, A. Duarah, T. C. Bora, S. Gogoi, and R. C. Boruah, “A microwave promoted solvent-free approach to steroidal quinolines and their in vitro evaluation for antimicrobial activities,” Steroids, vol. 77, no. 13, pp. 1438–1445, 2012.
[75]  D. Kakati, R. K. Sarma, R. Saikia, N. C. Barua, and J. C. Sarma, “Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones,” Steroids, vol. 78, no. 3, pp. 321–326, 2013.
[76]  J. F. Ernst and A. Schmidt, Dimorphism in Human Pathogenic and Apathogenic Yeasts, Karger, Bern, Switzerland, 2000.
[77]  J. F. Enrst, “Transcription factors in Candida albicans-environmental control of morphogenesis,” Microbiology, vol. 146, no. 8, pp. 1763–1774, 2000.
[78]  H.-J. Lo, J.-S. Wang, C.-Y. Lin et al., “Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 3, pp. 1213–1215, 2005.
[79]  T. Prasad, S. Hameed, R. Manoharlal et al., “Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans,” FEMS Yeast Research, vol. 10, no. 5, pp. 587–596, 2010.
[80]  P. Vandeputte, S. Pradervand, F. Ischer, A. T. Coste, S. Ferrari, and K. Harshman, “Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans,” Eukaryot Cell, vol. 11, no. 7, pp. 916–931, 2012.
[81]  P. D. Roepe, “pH and multidrug resistance,” Novartis Foundation Symposium, vol. 240, pp. 232–247, 2001.
[82]  D. Davis, “Adaptation to environmental pH in Candida albicans and its relation to pathogenesis,” Current Genetics, vol. 44, no. 1, pp. 1–7, 2003.
[83]  D. Davis, R. B. Wilson, and A. P. Mitchell, “RIM101-dependent and-independent pathways govern pH responses in Candida albicans,” Molecular and Cellular Biology, vol. 20, no. 3, pp. 971–978, 2000.
[84]  M. A. Ghannoum, B. Spellberg, S. M. Saporito-Irwin, and W. A. Fonzi, “Reduced virulence of Candida albicans PHR1 mutants,” Infection and Immunity, vol. 63, no. 11, pp. 4528–4530, 1995.
[85]  R. Serrano, A. Ruiz, D. Bernal, J. R. Chambers, and J. Ari?o, “The transcriptional response to alkaline pH in saccharomyces cerevisiae: Evidence for calcium-mediated signalling,” Molecular Microbiology, vol. 46, no. 5, pp. 1319–1333, 2002.
[86]  T. Bader, B. Bodendorfer, K. Schr?ppel, and J. Morschh?user, “Calcineurin is essential for virulence in Candida albicans,” Infection and Immunity, vol. 71, no. 9, pp. 5344–5354, 2003.
[87]  K. Mukhopadhyay, A. Kohli, and R. Prasad, “Drug susceptibilities of yeast cells are affected by membrane lipid composition,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 12, pp. 3695–3705, 2002.
[88]  J. L?ffler, H. Einsele, H. Hebart, U. Schumacher, C. Hrastnik, and G. Daum, “Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains,” FEMS Microbiology Letters, vol. 185, no. 1, pp. 59–63, 2000.
[89]  K. Mukhopadhyay, T. Prasad, P. Saini, T. J. Pucadyil, A. Chattopadhyay, and R. Prasad, “Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1778–1787, 2004.
[90]  J. M. Shea and M. Del Poeta, “Lipid signaling in pathogenic fungi,” Current Opinion in Microbiology, vol. 9, no. 4, pp. 352–358, 2006.
[91]  C. S. Ejsinga, J. L. Sampaioa, V. Surendranatha, E. Duchoslavb, K. Ekroosc, and R. W. Klemma, “Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry,” Proceedings of the National Academy of Sciences, vol. 106, no. 7, pp. 2136–2141, 2009.
[92]  M. Sharma, S. Dhamgaye, A. Singh, and R. Prasad, “Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis,” Frontiers in Bioscience, no. 4, pp. 1195–1209, 2012.
[93]  A. Singh and R. Prasad, “Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints,” PLoS ONE, vol. 6, no. 4, Article ID e19266, 2011.
[94]  A. Singh, V. Yadav, and R. Prasad, “Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance,” PLoS One, vol. 7, no. 6, Article ID e39812, 2012.
[95]  A. Singh, K. K. Mahto, and R. Prasad, “Lipidomics and in vitro azole resistance in Candida albicans,” OMICS, vol. 17, no. 2, pp. 84–93, 2013.
[96]  P. Jain, I. Akula, and T. Edlind, “Cyclic AMP signaling pathway modulates susceptibility of candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 10, pp. 3195–3201, 2003.
[97]  W. J. Steinbach, J. L. Reedy, R. A. Cramer Jr., J. R. Perfect, and J. Heitman, “Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections,” Nature Reviews Microbiology, vol. 5, no. 6, pp. 418–430, 2007.
[98]  R. Alonso-Monge, E. Román, D. M. Arana, J. Pla, and C. Nombela, “Fungi sensing environmental stress,” Clinical Microbiology and Infection, vol. 15, no. 1, pp. 17–19, 2009.
[99]  L. E. Cowen and S. Lindquist, “Cell biology: Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi,” Science, vol. 309, no. 5744, pp. 2185–2189, 2005.
[100]  L. E. Cowen, S. D. Singha, J. R. K?hlerb, C. Collinsa, A. K. Zaasc, and W. A. Schellc, “Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease,” Proceedings of the National Academy of Sciences, vol. 106, no. 8, pp. 2818–2823, 2009.
[101]  R. J. Bastidas, J. L. Reedy, H. Morales-Johansson, J. Heitman, and M. E. Cardenas, “Signaling cascades as drug targets in model and pathogenic fungi,” Current Opinion in Investigational Drugs, vol. 9, no. 8, pp. 856–864, 2008.
[102]  J. K. Thakur, H. Arthanari, F. Yang et al., “A nuclear receptor-like pathway regulating multidrug resistance in fungi,” Nature, vol. 452, no. 7187, pp. 604–609, 2008.
[103]  N. Robbins, C. Collins, J. Morhayim, and L. E. Cowen, “Metabolic control of antifungal drug resistance,” Fungal Genetics and Biology, vol. 47, no. 2, pp. 81–93, 2010.
[104]  S. L. Lafayette, C. Collins, A. K. Zaas et al., “PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of mkc1, calcineurin, and hsp90,” PLoS Pathogens, vol. 6, no. 8, Article ID e1001069, pp. 79–80, 2010.
[105]  C. H. de Dios, E. Román, R. A. Monge, and J. Pla, “The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence,” Current Protein and Peptide Science, vol. 11, no. 8, pp. 693–703, 2010.
[106]  J. B. Konopka, “N-acetylglucosamine (GlcNAc) functions in cell signaling,” Scientifica, vol. 2012, Article ID 489208, 15 pages, 2012.
[107]  J. V. Desai, V. M. Bruno, S. Ganguly, R. J. Stamper, K. F. Mitchell, and N. Solis, “Regulatory role of glycerol in Candida albicans biofilm formation,” MBio, vol. 4, no. 2, 2013.
[108]  S. H. Lee, J. E. Jeon, C. H. Ahn, S. C. Chung, J. Shin, and K. B. Oh, “Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from phorbas sp,” vol. 97, no. 7, pp. 3141–3148, 2013.
[109]  H. Saito, M. Tamura, K. Imai, T. Ishigami, and K. Ochiai, “Catechin inhibits Candida albicans dimorphism by disrupting Cek1 phosphorylation and cAMP synthesis,” Microbial Pathogenesis, vol. 56, pp. 16–20, 2013.
[110]  J. Mavrianos, E. L. Berkow, C. Desai, A. Pandey, M. Batish, and M. J. Rabadi, “Mitochondrial two-component signaling systems in Candida albicans,” Eukaryot Cell, 2013.
[111]  N. A. Gaur, N. Puri, N. Karnani, G. Mukhopadhyay, S. K. Goswami, and R. Prasad, “Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans,” FEMS Yeast Research, vol. 4, no. 4-5, pp. 389–399, 2004.
[112]  D. Talibi and M. Raymond, “Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in saccharomyces cerevisiae,” Journal of Bacteriology, vol. 181, no. 1, pp. 231–240, 1999.
[113]  C.-G. Chen, Y.-L. Yang, H.-I. Shih, C.-L. Su, and H.-J. Lo, “CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 12, pp. 4505–4512, 2004.
[114]  J. Morschh?user, K. S. Barker, T. T. Liu, J. Bla?-Warmuth, R. Homayouni, and P. D. Rogers, “The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans,” PLoS Pathogens, vol. 3, no. 11, article e164, 2007.
[115]  C.-G. Chen, Y.-L. Yang, K.-Y. Tseng et al., “Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans,” Fungal Genetics and Biology, vol. 46, no. 9, pp. 714–720, 2009.
[116]  P. M. Silver, B. G. Oliver, and T. C. White, “Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism,” Eukaryotic Cell, vol. 3, no. 6, pp. 1391–1397, 2004.
[117]  A. T. Coste, V. Turner, F. Ischer et al., “A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans,” Genetics, vol. 172, no. 4, pp. 2139–2156, 2006.
[118]  H.-F. Tsai, A. A. Krol, K. E. Sarti, and J. E. Bennett, “Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 4, pp. 1384–1392, 2006.
[119]  J.-P. Vermitsky, K. D. Earhart, W. L. Smith, R. Homayouni, T. D. Edlind, and P. D. Rogers, “Pdr1 regulates multidrug resistance in candida glabrata: gene disruption and genome-wide expression studies,” Molecular Microbiology, vol. 61, no. 3, pp. 704–722, 2006.
[120]  N. Dunkel, J. Bla?, P. D. Rogers, and J. Morschh?user, “Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains,” Molecular Microbiology, vol. 69, no. 4, pp. 827–840, 2008.
[121]  N. Dunkel, T. T. Liu, K. S. Barker, R. Homayouni, J. Morschh?user, and P. D. Rogers, “A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate,” Eukaryotic Cell, vol. 7, no. 7, pp. 1180–1190, 2008.
[122]  S. Ferrari, F. Ischer, D. Calabrese et al., “Gain of function mutations in CgPDR1 of candida glabrata not only mediate antifungal resistance but also enhance virulence,” PLoS Pathogens, vol. 5, no. 1, Article ID e1000268, 2009.
[123]  J. C. Pérez, C. A. Kumamoto, and A. D. Johnson, “Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit,” PLOS Biology, vol. 11, no. 3, Article ID e1001510, 2013.
[124]  S. Dhamgaye, M. Bernard, G. Lelandais, O. Sismeiro, S. Lemoine, and J. Y. Coppée, “RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans,” BMC Genomics, vol. 13, article 396, 2012.
[125]  R. Manoharlal, N. A. Gaur, S. L. Panwar, J. Morschh?user, and R. Prasad, “Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 4, pp. 1481–1492, 2008.
[126]  R. Manoharlal, J. Gorantala, M. Sharma, D. Sanglard, and R. Prasad, “PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans,” Microbiology, vol. 156, no. 2, pp. 313–326, 2010.
[127]  C. Chen and S. M. Noble, “Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host,” PLOS Pathogens, vol. 8, no. 11, Article ID e1002956, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133