全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of a Cell-Based Functional Assay for the Detection of Clostridium botulinum Neurotoxin Types A and E

DOI: 10.1155/2013/593219

Full-Text   Cite this paper   Add to My Lib

Abstract:

The standard procedure for definitive detection of BoNT-producing Clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (MBA). The mouse bioassay is highly sensitive and specific, but it is expensive and time-consuming, and there are ethical concerns due to use of laboratory animals. Cell-based assays provide an alternative to the MBA in screening for BoNT-producing Clostridia. Here, we describe a cell-based assay utilizing a fluorescence reporter construct expressed in a neuronal cell model to study toxin activity in situ. Our data indicates that the assay can detect as little as 100?pM BoNT/A activity within living cells, and the assay is currently being evaluated for the analysis of BoNT in food matrices. Among available in vitro assays, we believe that cell-based assays are widely applicable in high-throughput screenings and have the potential to at least reduce and refine animal assays if not replace it. 1. Introduction Botulinum neurotoxins (BoNTs) are the most toxic substance known [1]. They are primarily produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, by some strains of Clostridium butyricum and Clostridium baratii [2, 3]. Intoxication with one of the seven distinct serotypes of BoNT (A–G) causes botulism. One of 4 serotypes of BoNT (A, B, E, and F) is usually the cause of human botulism. Exposure to type A neurotoxin (BoNT/A) causes the majority of food-borne outbreaks and has been observed to cause more severe symptoms with a higher mortality [4]. BoNTs are zinc proteases that cleave and inactivate cellular proteins essential for the release of the neurotransmitter acetylcholine. BoNT/A, -C, and -E cleave the peripheral plasma membrane protein Soluble N-ethylmaleimide-sensitive factor Attachment Protein of 25?kDA (SNAP-25); BoNT/B, -D, -F, and -G cleave synaptobrevin 2, also called as vesicle-associated membrane protein-2 (VAMP-2). In addition to cleaving SNAP-25, BoNT-C also cleaves the integral plasma membrane protein, syntaxin [1]. Cleavage of these substrates inhibits neuronal exocytosis [5]. The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) superfamily has become, since its discovery, the most intensively studied element of the protein machinery involved in intracellular trafficking. Currently, the only accepted assay with which to detect active Clostridium botulinum neurotoxin is an in vivo mouse bioassay. The mouse bioassay is sensitive and robust and does not require specialized equipment. However, the mouse bioassay is slow

References

[1]  C. Verderio, O. Rossetto, C. Grumelli, C. Frassoni, C. Montecucco, and M. Matteoli, “Entering neurons: botulinum toxins and synaptic vesicle recycling,” EMBO Reports, vol. 7, no. 10, pp. 995–999, 2006.
[2]  S. McGrath, J. S. G. Dooley, and R. W. Haylock, “Quantification of Clostridium botulinum toxin gene expression by competitive reverse transcription-PCR,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1423–1428, 2000.
[3]  A. Scarlatos, A. J. Cadotte, T. B. DeMarse, and B. A. Welt, “Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin,” Journal of Food Science, vol. 73, no. 3, pp. E129–E136, 2008.
[4]  B. A. Woodruff, P. M. Griffin, L. M. McCroskey et al., “Clinical and laboratory comparison of botulism from toxin types A, B, and E in the United States, 1975–1988,” Journal of Infectious Diseases, vol. 166, no. 6, pp. 1281–1286, 1992.
[5]  G. Schiavo, M. Matteoli, and C. Montecucco, “Neurotoxins affecting neuroexocytosis,” Physiological Reviews, vol. 80, no. 2, pp. 717–766, 2000.
[6]  J. J. Schmidt and R. G. Stafford, “Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F,” Applied and Environmental Microbiology, vol. 69, no. 1, pp. 297–303, 2003.
[7]  C. Anne, F. Cornille, C. Lenoir, and B. P. Roques, “High-throughput fluorogenic assay for determination of botulinum type B neurotoxin protease activity,” Analytical Biochemistry, vol. 291, no. 2, pp. 253–261, 2001.
[8]  J. J. Schmidt, R. G. Stafford, and C. B. Millard, “High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F,” Analytical Biochemistry, vol. 296, no. 1, pp. 130–137, 2001.
[9]  T. A. N. Ekong, I. M. Feavers, and D. Sesardic, “Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro,” Microbiology, vol. 143, no. 10, pp. 3337–3347, 1997.
[10]  J. J. Schmidt and K. A. Bostian, “Proteolysis of synthetic peptides by type A botulinum neurotoxin,” Journal of Protein Chemistry, vol. 14, no. 8, pp. 703–708, 1995.
[11]  B. Hallis, B. A. F. James, and C. C. Shone, “Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities,” Journal of Clinical Microbiology, vol. 34, no. 8, pp. 1934–1938, 1996.
[12]  M. Wictome, K. Newton, K. Jameson et al., “Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay,” Applied and Environmental Microbiology, vol. 65, no. 9, pp. 3787–3792, 1999.
[13]  M. Wictome, K. A. Newton, K. Jameson et al., “Development of in vitro assays for the detection of botulinum toxins in foods,” FEMS Immunology and Medical Microbiology, vol. 24, no. 3, pp. 319–323, 1999.
[14]  M. Dongo, W. H. Tepp, E. A. Johnson, and E. R. Chapman, “Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14701–14706, 2004.
[15]  G. E. Boldt, J. P. Kennedy, and K. D. Janda, “Identification of a potent botulinum neurotoxin A protease inhibitor using in situ lead identification chemistry,” Organic Letters, vol. 8, no. 8, pp. 1729–1732, 2006.
[16]  E. A. Perpetuo, L. Juliano, M. A. Juliano et al., “Enzymatic profiling of tetanus and botulinum neurotoxins based on vesicle-associated-membrane protein derived fluorogenic substrates,” Protein and Peptide Letters, vol. 15, no. 10, pp. 1100–1106, 2008.
[17]  T. M. Piazza, D. S. Blehert, F. M. Dunning et al., “In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood,” Applied and Environmental Microbiology, vol. 77, no. 21, pp. 7815–7822, 2011.
[18]  D. R. Ruge, F. M. Dunning, T. M. Piazza et al., “Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters,” Analytical Biochemistry, vol. 411, no. 2, pp. 200–209, 2011.
[19]  E. Fernández-Salas, H. Ho, P. Garay, L. E. Steward, and K. R. Aoki, “Is the light chain subcellular localization an important factor in botulinum toxin duration of action?” Movement Disorders, vol. 19, supplement 8, pp. S23–S34, 2004.
[20]  E. Fernández-Salas, L. E. Steward, H. Ho et al., “Plasma membrane localization signals in the light chain of botulinum neurotoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3208–3213, 2004.
[21]  L. Brand, “Conformational flexibility in a staphylococcal nuclease mutant K45C from time-resolved resonance energy transfer measurements,” Biochemistry, vol. 33, no. 34, pp. 10457–10462, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413