全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Overview of the CNS-Pharmacodynamic Profiles of Nonselective and Selective GABA Agonists

DOI: 10.1155/2012/134523

Full-Text   Cite this paper   Add to My Lib

Abstract:

Various subtype selective partial GABA-A agonists are in development to treat anxiety disorders. These compounds are expected to be anxiolytic with fewer undesirable side effects, compared to nonselective GABA-A agonists like benzodiazepines. Several subtype selective and nonselective GABA-A agonists have been examined in healthy volunteers, using a battery addressing different brain domains. Data from five placebo-controlled double-blind studies were pooled. Lorazepam 2?mg was the comparator in three studies. Three -selective GABAA agonists (i.e., TPA023, TPACMP2, SL65.1498), one -selective GABAA agonists (zolpidem), and another full agonist (alprazolam) were examined. Pharmacological selectivity was assessed by determination of regression lines for the change from baseline of saccadic-peak-velocity- (ΔSPV-) relative effect, relative to changes in different pharmacodynamic endpoints (ΔPD). SPV was chosen for its sensitivity to the anxiolysis of benzodiazepines. Slopes of the ΔSPV-ΔPD relations were consistently lower with the selective GABA-A agonists than with lorazepam, indicating that their PD effects are less than their SPV-effects. The ΔSPV-ΔPD relations of lorazepam were comparable to alprazolam. Zolpidem showed relatively higher impairments in ΔPD relative to ΔSPV, but did not significantly differ from lorazepam. These PD results support the pharmacological selectivity of the -selective GABA-A agonists, implying an improved therapeutic window. 1. Introduction Anxiety is a psychological and physiological state with somatic, emotional, cognitive, and behavioral components [1], which dominates thinking and leads to disturbance of daily functioning. Serotonergic antidepressants, either selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs), are currently prescribed as the 1st-line treatment for several anxiety disorders. However, the slow onset of therapeutic effect and the presence of sexual side effects prevent these drugs from more extensive use and lead to lack of treatment compliance [2]. Moreover, SSRIs/SNRIs cause transient increase of anxiety during the first few weeks of administration. All these clinical experiences provide space for the use of benzodiazepines (BZDs) in acute anxiety episodes. Benzodiazepines are the most commonly prescribed anxiolytic drugs, although treatment guidelines generally limit their use to several weeks to prevent the occurrence of tolerance and dependence. Benzodiazepines are allosteric modulators of the GABAA receptors that affect the central nervous system

References

[1]  M. E. P. Seligman, E. F. Walker, and D. L. Rosenhan, Abnormal Psychology, W.W. Norton & Company, New York, NY, USA, 4th edition, 2000.
[2]  A. S. Eison and U. L. Mullins, “Regulation of central 5- receptors: a review of in vivo studies,” Behavioural Brain Research, vol. 73, no. 1-2, pp. 177–181, 1995.
[3]  G. Wong and P. Skolnick, “High affinity ligands for “diazepam-insensitive” benzodiazepines receptors,” European Journal of Pharmacology—Molecular Pharmacology Section, vol. 225, no. 1, pp. 63–68, 1992.
[4]  J. R. Atack, “Subtype-selective receptor modulation yields a novel pharmacological profile: the design and development of TPA023,” Advances in Pharmacology, vol. 57, pp. 137–185, 2009.
[5]  R. M. McKernan, T. W. Rosahl, D. S. Reynolds et al., “Sedative but not anxiolytic properties of benzodiazepines are mediated by the receptor α1 subtype,” Nature Neuroscience, vol. 3, no. 6, pp. 587–592, 2000.
[6]  J. K. Rowlett, D. M. Platt, S. Lelas, J. R. Atack, and G. R. Dawson, “Different receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 915–920, 2005.
[7]  J. Knabl, R. Witschi, K. H?sl et al., “Reversal of pathological pain through specific spinal receptor subtypes,” Nature, vol. 451, no. 7176, pp. 330–334, 2008.
[8]  J. Knabl, U. B. Zeilhofer, F. Crestani, U. Rudolph, and H. U. Zeilhofer, “Genuine antihyperalgesia by systemic diazepam revealed by experiments in receptor point-mutated mice,” Pain, vol. 141, no. 3, pp. 233–238, 2009.
[9]  J. R. Atack, P. J. Bayley, G. R. Seabrook, K. A. Wafford, R. M. McKernan, and G. R. Dawson, “L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing receptors,” Neuropharmacology, vol. 51, no. 6, pp. 1023–1029, 2006.
[10]  T. M. Ballard, F. Knoflach, E. Prinssen et al., “RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors,” Psychopharmacology, vol. 202, no. 1–3, pp. 207–223, 2009.
[11]  S. J. De Visser, J. P. Van Der Post, P. P. De Waal, F. Cornet, A. F. Cohen, and J. M. A. Van Gerven, “Biomarkers for the effects of benzodiazepines in healthy volunteers,” British Journal of Clinical Pharmacology, vol. 55, no. 1, pp. 39–50, 2003.
[12]  S. L. De Haas, S. J. De Visser, J. P. Van Der Post et al., “Pharmacodynamic and pharmacokinetic effects of TPA023, a α2,3 subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers,” Journal of Psychopharmacology, vol. 21, no. 4, pp. 374–383, 2007.
[13]  S. L. De Haas, S. J. De Visser, J. P. Van Der Post et al., “Pharmacodynamic and pharmacokinetic effects of MK-0343, a α2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers,” Journal of Psychopharmacology, vol. 22, no. 1, pp. 24–32, 2008.
[14]  S. L. De Haas, K. L. Franson, J. A. J. Schmitt et al., “The pharmacokinetic and pharmacodynamic effects of SL65.1498, a 2,3 selective agonist, in comparison with lorazepam in healthy volunteers,” Journal of Psychopharmacology, vol. 23, no. 6, pp. 625–632, 2009.
[15]  S. L. De Haas, R. C. Schoemaker, J. M. A. Van Gerven, P. Hoever, A. F. Cohen, and J. Dingemanse, “Pharmacokinetics, pharmacodynamics and the pharmacokinetic/ pharmacodynamic relationship of zolpidem in healthy subjects,” Journal of Psychopharmacology, vol. 24, no. 11, pp. 1619–1629, 2010.
[16]  A. L. Van Steveninck, B. N. M. Van Berckel, R. C. Schoemaker, D. D. Breimer, J. M. A. Van Gerven, and A. F. Cohen, “The sensitivity of pharmacodynamic tests for the central nervous system effects of drugs on the effects of sleep deprivation,” Journal of Psychopharmacology, vol. 13, no. 1, pp. 10–17, 1999.
[17]  J. M. P. Baas, N. Mol, J. L. Kenemans et al., “Validating a human model for anxiety using startle potentiated by cue and context: the effects of alprazolam, pregabalin, and diphenhydramine,” Psychopharmacology, vol. 205, no. 1, pp. 73–84, 2009.
[18]  A. L. Van Steveninck, S. Verver, H. C. Schoemaker et al., “Effects of temazepam on saccadic eye movements: concentration-effect relationships in individual volunteers,” Clinical Pharmacology and Therapeutics, vol. 52, no. 4, pp. 402–408, 1992.
[19]  A. L. Van Steveninck, H. C. Schoemaker, M. S. M. Pieters, R. Kroon, D. D. Breimer, and A. F. Cohen, “A comparison of the sensitivities of adaptive tracking, eye movement analysis, and visual analog lines to the effects of incremental doses of temazepam in healthy volunteers,” Clinical Pharmacology and Therapeutics, vol. 50, no. 2, pp. 172–180, 1991.
[20]  P. R. M. Bittencourt, P. Wade, A. T. Smith, and A. Richens, “The relationship between peak velocity of saccadic eye movements and serum benzodiazepine concentration,” British Journal of Clinical Pharmacology, vol. 12, no. 4, pp. 523–533, 1981.
[21]  R. W. Baloh, A. W. Sills, W. E. Kumley, and V. Honrubia, “Quantitative measurement of saccade amplitude duration, and velocity,” Neurology, vol. 25, no. 11, pp. 1065–1070, 1975.
[22]  H. Norris, “The action of sedatives on brain stem oculomotor systems in man,” Neuropharmacology, vol. 10, no. 2, pp. 181–191, 1971.
[23]  A. Bond and M. Lader, “The use of analogue scales in rating subjective feelings,” British Journal of Medical Psychology, vol. 47, pp. 211–218, 1974.
[24]  A. L. Van Steveninck, R. Gieschke, H. C. Schoemaker et al., “Pharmacodynamic interactions of diazepam and intravenous alcohol at pseudo steady state,” Psychopharmacology, vol. 110, no. 4, pp. 471–478, 1993.
[25]  A. L. Van Steveninck, A. E. Walln?fer, R. C. Schoemaker et al., “A study of the effects of long-term use on individual sensitivity to temazepam and lorazepam in a clinical population,” British Journal of Clinical Pharmacology, vol. 44, no. 3, pp. 267–275, 1997.
[26]  J. R. Atack, K. A. Wafford, S. J. Tye et al., “TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3- (2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for α2- and 3-containing receptors, is a nonsedating anxiolytic in rodents and primates,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 1, pp. 410–422, 2006.
[27]  R. G. Borland and A. N. Nicholson, “Visual motor co-ordination and dynamic visual acuity,” British Journal of Clinical Pharmacology, vol. 18, no. 1, pp. 69S–72S, 1984.
[28]  G. Griebel, G. Perrault, J. Simiand et al., “SL651498: an anxioselective compound with functional selectivity for α2- and α3-containing γ-aminobutyric ( ) receptors,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 2, pp. 753–768, 2001.
[29]  F. Crestani, J. R. Martin, H. M?hler, and U. Rudolph, “Mechanism of action of the hypnotic zolpidem in vivo,” British Journal of Pharmacology, vol. 131, no. 7, pp. 1251–1254, 2000.
[30]  E. Sanna, F. Busonero, G. Talani et al., “Comparison of the effects of zaleplon, zolpidem, and triazolam at various receptor subtypes,” European Journal of Pharmacology, vol. 451, no. 2, pp. 103–110, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133