全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CMOS Ultra-Wideband Low Noise Amplifier Design

DOI: 10.1155/2013/328406

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the design of ultra-wideband low noise amplifier (UWB LNA). The proposed UWB LNA whose bandwidth extends from 2.5?GHz to 16?GHz is designed using a symmetric 3D RF integrated inductor. This UWB LNA has a gain of 11 ± 1.0?dB and a NF less than 3.3?dB. Good input and output impedance matching and good isolation are achieved over the operating frequency band. The proposed UWB LNA is driven from a 1.8?V supply. The UWB LNA is designed and simulated in standard TSMC 0.18?μm CMOS technology process. 1. Introduction CMOS technology is one of the most prevailing technologies used for the implementation of radio frequency integrated circuits (RFICs) due to its reduced cost and its compatibility with silicon-based system on chip [1]. The use of ultra-wideband (UWB) frequency range (3.1–10.6?GHz) for commercial applications was approved in February 2002 by the Federal Communications Commission. Low cost, reduced power consumption, and transmission of data at high rates are the advantages of UWB technology. UWB technology has many applications such as wireless sensor and personal area networks, ground penetrating radars, and medical applications [2]. Low noise amplifier is considered the backbone of the UWB front-end RF receiver. It is responsible for signal reception and amplification over the UWB frequency range. LNA has many desired design specifications such as low and flat noise figure, high and flat power gain, good input and output wide impedance matching, high reverse isolation, and reduced DC power consumption [1, 3]. Nowadays one of the most suitable configurations suggested for LNA implementation is current reuse cascaded amplifier. This LNA configuration can attain low DC power consumption, high flattened gain, minimized NF, and excellent reverse isolation while achieving wide input and output impedance matching [1–3]. Radio frequency integrated inductors play a significant role in radio frequency integrated circuits (RFICs) implementation. Design, development, and performance improvement of RF integrated inductors represent a challenging work. Achieving high integration level and cost minimization of RFICs are obstructed because of the difficulties facing the RF integrated inductors designers which are related to obtaining high quality factors [4–6]. In this paper, the implementation of LNAs using 3D integrated inductors will be investigated. A symmetric 3D structure is proposed as a new structure of integrated inductors for RFICs. This paper discusses the design procedure of current reuse cascaded UWB LNA and its bandwidth

References

[1]  Y. S. Lin, C. Z. Chen, H. Y. Yang et al., “Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 287–296, 2010.
[2]  A. I. A. Galal, R. K. Pokharel, H. Kanay, and K. Yoshida, “Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18 μm CMOS process,” in Proceedings of the 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF '10), pp. 33–36, January 2010.
[3]  K. Yousef, H. Jia, R. Pokharel, A. Allam, M. Ragab, and K. Yoshida, “A 2–16?GHz CMOS current reuse cascaded ultra-wideband low noise amplifier,” in Proceedings of the Saudi International Electronics, Communications and Photonics Conference (SIECPC '11), April 2011.
[4]  K. Yousef, H. Jia, R. Pokharel, A. Allam, M. Ragab, and K. Yoshida, “Design of 3D Integrated Inductors for RFICs,” in Proceeding of 2012 Japan Egypt Conference on Electronics, Communications and Computers (JECECC '12), pp. 22–25.
[5]  X. N. Wang, X. L. Zhao, Y. Zhou, X. H. Dai, and B. C. Cai, “Fabrication and performance of novel RF spiral inductors on silicon,” Microelectronics Journal, vol. 36, no. 8, pp. 737–740, 2005.
[6]  A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC's,” IEEE Journal of Solid-State Circuits, vol. 33, no. 10, pp. 1470–1481, 1998.
[7]  T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2nd edition, 2004.
[8]  S. S. Mohan, M. Del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346–355, 2000.
[9]  H. T. Friis, “Noise figure of radio receivers,” Proceedings of the IRE, vol. 32, no. 7, pp. 419–422, 1944.
[10]  H. Y. Tsui and J. Lau, “Experimental results and die area efficient self-shielded on-chip vertical solenoid inductors for multi-GHz CMOS RFIC,” in Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 243–246, June 2003.
[11]  H. Garcia, S. Khemchndai, R. Puildo, A. Lturri, and J. Pino, “A Wideband active feedback LNA with a Modified 3D inductor,” Microwave and Optical Technology Letters, vol. 52, pp. 1561–1567, 2010.
[12]  P. Sun, Sh. Liao, H. Lin, Ch. Yang, and Y. Hsiao, “Design of 3.1 to 10.6 GHz ultra-wideband low noise amplifier with current reuse techniques and low power consumption,” in Proceedings of the Progress In Electromagnetics Research Symposium, pp. 901–905, Beijing, China, March 2009.
[13]  A. I. A. Galal, R. K. Pokharel, H. Kanaya, and K. Yoshida, “1-5GHz wideband low noise amplifier using active inductor,” in 2010 IEEE International Conference on Ultra-Wideband, ICUWB2010, pp. 193–196, chn, September 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413