全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Permittivity and Backscattering Coefficient of Diesel Oil-Contaminated Soil at C Band (5.3?GHz)

DOI: 10.1155/2013/950862

Full-Text   Cite this paper   Add to My Lib

Abstract:

Studying the behavior of soil contaminated by diesel requires the measurement and calculation of electrical parameters such as permittivity and backscattering coefficient. It is also necessary to study the physical parameters such as surface roughness. The intent of this paper is to present a broad and updated overview of the diesel oil contaminated soil, emphasizing permittivity and scattering coefficient that are involved in determining and detecting the rate at which and extent to which hydrocarbons contaminate the soil and environment. The measurement of permittivity and the calculations of backscattering coefficient values were made with different amounts of diesel oil contamination and different incident angles in 5° intervals ranging from 10° to 80° for both horizontal and vertical polarization at C band. The values of scattering coefficient for different look angles (25°, 30°, 35°, 40°, 45°, 50°, and 55°) were calculated and are suitable for comparison with data generated from other remote sensing platforms. Accurate electrical parameter measurements of soil contamination and recognition of their dependence on physical and chemical composition are interesting and can support using microwave remote sensing instruments to observe the earth. 1. Introduction Improved understanding of spatial variation of soil surface characteristics such as soil contamination, texture, and constituents is critical in remote sensing. Microwave remote sensing data are function not only of the technical parameters of the sensor but also of the geometric forms and electrical properties of the objects on the earth such as permittivity, and backscattering coefficient [1]. The radar backscattering coefficient ( ) from soil surface depends primarily on the surface roughness and the permittivity of the soil. It also represents the scattering behavior of an object at a given frequency, incident angle, and polarization and it is defined directly in terms of the incident and scattered fields [2]. Microwave techniques can be implemented to determine the extent and the distribution structure of an oil spill on land. Diesel spills in soil cause pollution that can be toxic for biological particles living in the soil [3]. Soil contamination is caused by the presence of man-made chemicals or other alteration in the natural soil environment. The average total worldwide annual release of petroleum (oils) from all known sources to the environment (land and ocean) has been estimated at 1.3 million tons [4]. Land-based sources contamination typically arises from the rupture of underground

References

[1]  X. Jinkai, “Dielectric properties of minerals and their applications in microwave remote sensing,” Chinese Journal of Geochemistry, vol. 9, no. 2, pp. 169–177, 1990.
[2]  O. P. N. Calla, M. Mathur, M. Upadhayay, R. Punia, and P. Chaudhary, “Image generation for microwave remote sensing using java language,” in Proceedings of the 1st International Conference on Microwave, Antenna, Propagation and Remote Sensing (ICMARS '03), pp. 3–8, Jodhpur, India, December 2003.
[3]  O. P. N. Calla, D. Bohra, N. Ahmadian, S. Hasan, and R. Vyas, “Study of effect on the electrical parameters of soil in presence of diesel oil at C band (5.3?GHZ),” in Proceedings of the National Conference on Emerging Trends in Electronic and Telecommunication, India Vision 2020, pp. 139–142, Jodhpur, India, March 2009.
[4]  National Academy of Sciences, Oil in the Sea-Inputs, Fates, and Effects, National Academy Press, Washington, DC, USA, 2002.
[5]  W. Michalcewicz, “Wp?yw oleju nap?dowego do silników Diesla na liczebno?? bakterii, grzybów, promieniowców oraz biomas? mikroorganizmów glebowych,” Roczniki Pantswowego Zakladu Higieny, vol. 46, pp. 91–97, 1995.
[6]  H. G. Song and R. Bartha, “Effects of jet fuel spills on the microbial community of soil,” Applied and Environmental Microbiology, vol. 56, no. 3, pp. 646–651, 1990.
[7]  A. Amadi, S. D. Abbey, and A. Nma, “Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria,” Water, Air, and Soil Pollution, vol. 86, no. 1–4, pp. 1–11, 1996.
[8]  K. S. J?rgensen, J. Puustinen, and A. M. Suortti, “Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles,” Environmental Pollution, vol. 107, no. 2, pp. 245–254, 2000.
[9]  J. G. Leahy and R. R. Colwell, “Microbial degradation of hydrocarbons in the environment,” Microbiology and Molecular Biology Reviews, vol. 54, no. 3, pp. 305–315, 1990.
[10]  A. Husaini, H. A. Roslan, K. S. Y. Hii, and C. H. Ang, “Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites,” World Journal of Microbiology and Biotechnology, vol. 24, no. 12, pp. 2789–2797, 2008.
[11]  P. O. Abioye, A. Abdul Aziz, and P. Agamuthu, “Enhanced biodegradation of used engine oil in soil amended with organic wastes,” Water, Air, and Soil Pollution, vol. 209, no. 1–4, pp. 173–179, 2010.
[12]  E. G. Njoku and J. A. Kong, “Theory for passive microwave remote sensing of near-surface soil moisture,” Journal of Geophysical Research, vol. 82, no. 20, pp. 3108–3118, 1977.
[13]  E. G. Njoku and D. Entekhabi, “Passive microwave remote sensing of soil moisture,” Journal of Hydrology, vol. 184, no. 1-2, pp. 101–129, 1996.
[14]  F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Active and Passive Vol III, Volume Scattering and Emission Theory, Advanced Systems and Applications, Artech House, Dedham, Mass, USA, 1986.
[15]  M.K. Blade and H. D. Ziervogel, “The use of remote sensing technology to delineate hydrocarbon contamination in the Arctic,” Published in EBA Special Edition, 2011.
[16]  O. V. Toutoubalina and W. G. Rees, “Remote sensing of industrial impact on Arctic vegetation around Noril'sk, northern Siberia: preliminary results,” International Journal of Remote Sensing, vol. 20, no. 15-16, pp. 2979–2990, 1999.
[17]  G. Schwartz, G. Eshel, M. Ben-Haim, and E. Ben-Dor, Reflectance Spectroscopy as a Rapid Tool for Qualitative Mapping and Classification of Hydrocarbons Soil Contamination, Tel Aviv, Israel, 2009.
[18]  E. A. Cloutis, “Spectral reflectance properties of hydrocarbons: remote-sensing implications,” Science, vol. 245, no. 4914, pp. 165–168, 1989.
[19]  B. H?rig, F. Kühn, F. Oschütz, and F. Lehmann, “HyMap hyperspectral remote sensing to detect hydrocarbons,” International Journal of Remote Sensing, vol. 22, no. 8, pp. 1413–1422, 2001.
[20]  T. Lammoglia and C. R. D. S. Filho, “Spectroscopic characterization of oils yielded from Brazilian offshore basins: potential applications of remote sensing,” Remote Sensing of Environment, vol. 115, no. 10, pp. 2525–2535, 2011.
[21]  G. Schwartz, E. Ben-Dor, and G. Gil Eshel, “Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories,” Applied and Environmental Soil Science, vol. 2012, Article ID 751956, 11 pages, 2012.
[22]  B. R. Stallard, M. J. Garcia, and S. Kaushik, “Near-IR reflectance spectroscopy for the determination of motor oil contamination in sandy loam,” Applied Spectroscopy, vol. 50, no. 3, pp. 334–338, 1996.
[23]  H. W. Zwanziger and H. F?rster, “Near infrared spectroscopy of fuel contaminated sand and soil. I. preliminary results and calibration study,” Journal of Near Infrared Spectroscopy, vol. 6, no. 1–4, pp. 189–197, 1998.
[24]  K. H. Winkelmann, On the applicability of imaging spectrometry for the detection and investigation of contaminated sites with particular consideration given to the detection of fuel hydrocarbon contaminants in soil [Ph.D. thesis], Brandenburg University of Technology at Cottbus, 2005.
[25]  S. Chakraborty, D. C. Weindorf, C. L. S. Morgan et al., “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” Journal of Environmental Quality, vol. 39, no. 4, pp. 1378–1387, 2010.
[26]  T. Cocks, “The HyMapTM airborne hyperspectral sensor: the system, calibration and performance,” in Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, pp. 37–42, EARSeL, 1998.
[27]  D. W. Charles, “Summary of space-based active and passive sensor applications for disaster,” in Proceedings of the 3th NOAA Support Passive Sensing Microwave Workshop, Silver Spring, MD, USA, May 2007.
[28]  F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Active and Passive Vol. II Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley, Reading, Mass, USA, 1982.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413