全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Longitudinal Imaging of Cancer Cell Metastases in Two Preclinical Models: A Correlation of Noninvasive Imaging to Histopathology

DOI: 10.1155/2014/102702

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metastatic spread is the leading cause of death from cancer. Early detection of cancer at primary and metastatic sites by noninvasive imaging modalities would be beneficial for both therapeutic intervention and disease management. Noninvasive imaging modalities such as bioluminescence (optical), positron emission tomography (PET)/X-ray computed tomography (CT), and magnetic resonance imaging (MRI) can provide complementary information and accurately measure tumor growth as confirmed by histopathology. Methods. We validated two metastatic tumor models, MDA-MD-231-Luc and B16-F10-Luc intravenously injected, and 4T1-Luc cells orthotopically implanted into the mammary fat pad. Longitudinal whole body bioluminescence imaging (BLI) evaluated metastasis, and tumor burden of the melanoma cell line (B16-F10-Luc) was correlated with (PET)/CT and MRI. In addition, ex vivo imaging evaluated metastasis in relevant organs and histopathological analysis was used to confirm imaging. Results. BLI revealed successful colonization of cancer cells in both metastatic tumor models over a 4-week period. Furthermore, lung metastasis of B16-F10-Luc cells imaged by PET/CT at week four showed a strong correlation ( ) with histopathology. The presence and degree of metastasis as determined by imaging correlated ( ) well with histopathology findings. Conclusions. We validated two metastatic tumor models by longitudinal noninvasive imaging with good histopathology correlation. 1. Introduction Metastasis of cancer cells from primary tumors is one of the leading causes of poor prognosis and death from the disease. Metastatic spread is the root of approximately 90% of cancer-related deaths [1]. Early detection of cancer cell metastasis would be incredibly beneficial for timely therapeutic intervention and management of the disease. In most preclinical animal studies, gross examination and histopathological analysis are commonly used to evaluate dissemination of cancer cells to secondary sites. These techniques are limited, however, as they cannot be used to adequately monitor tumor development. Furthermore, optical microscopy may have an inadequate field of view (3D morphometric) for thorough tumor evaluation. Noninvasive imaging provides the ability to perform real-time serial imaging to enhance the observation of disease progression and/or evaluate therapeutic treatment response. In addition, noninvasive imaging allows researchers to use fewer animals with greater statistical power. Orthotopic and metastatic tumor models provide an appropriate tumor microenvironment (seed and soil

References

[1]  C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011.
[2]  I. J. Fidler, “Critical determinants of metastasis,” Seminars in Cancer Biology, vol. 12, no. 2, pp. 89–96, 2002.
[3]  G. Damia and M. D'Incalci, “Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models?” European Journal of Cancer, vol. 45, no. 16, pp. 2768–2781, 2009.
[4]  B. A. Hoff, K. Chughtai, Y. H. Jeon et al., “Multimodality imaging of tumor and bone response in a mouse model of bony metastasis,” Translational Oncology, vol. 5, no. 6, pp. 415–421, 2012.
[5]  A. L. Puaux, L. C. Ong, Y. Jin et al., “A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals,” International Journal of Molecular Imaging, vol. 2011, Article ID 321538, 12 pages, 2011.
[6]  G. van der Horst, J. J. van Asten, A. Figdor et al., “Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis,” European Urology, vol. 60, no. 2, pp. 337–343, 2011.
[7]  E. O. Aboagye, F. J. Gilbert, I. N. Fleming et al., “Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials,” European Radiology, vol. 22, no. 7, pp. 1465–1478, 2012.
[8]  H. C. Kang, K. S. Tan, S. M. Keefe, et al., “MRI assessment of early tumor response in metastatic renal cell carcinoma patients treated with sorafenib,” American Journal of Roentgenology, vol. 200, no. 1, pp. 120–126, 2013.
[9]  A. Balducci, Y. Wen, Y. Zhang et al., “A novel probe for the non-invasive detection of tumor-associated inflammation,” Oncoimmunology, vol. 2, no. 2, Article ID e23034, 2013.
[10]  K. Changani, C. Pereira, S. Young et al., “Longitudinal characterisation of a model of chronic allergic lung inflammation in mice using imaging, functional and immunological methods,” Journal of Inflammation, vol. 10, supplement 1, p. P4, 2013.
[11]  J. P. Holland, P. Cumming, and N. Vasdev, “PET of signal transduction pathways in cancer,” Journal of Nuclear Medicine, vol. 53, no. 9, pp. 1333–1336, 2012.
[12]  N. Matusiak, A. Waarde, R. Bischoff et al., “Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT,” Current Pharmaceutical Design, vol. 19, no. 25, pp. 4647–4672, 2013.
[13]  P. C. Black, A. Shetty, G. A. Brown et al., “Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis,” BJU International, vol. 106, no. 11, pp. 1799–1804, 2010.
[14]  A. Giubellino, G. M. Woldemichael, C. Sourbier et al., “Characterization of two mouse models of metastatic pheochromocytoma using bioluminescence imaging,” Cancer Letters, vol. 316, no. 1, pp. 46–52, 2012.
[15]  M. Zabala, P. Alzuguren, C. Benavides et al., “Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy,” Molecular Cancer, vol. 8, article 2, 2009.
[16]  X. Ma, Z. Liu, X. Yang et al., “Dual-modality monitoring of tumor response to cyclophosphamide therapy in mice with bioluminescence imaging and small-animal positron emission tomography,” Molecular Imaging, vol. 10, no. 4, pp. 278–283, 2011.
[17]  A. Rehemtulla, L. D. Stegman, S. J. Cardozo et al., “Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging,” Neoplasia, vol. 2, no. 6, pp. 491–495, 2000.
[18]  O. Szentirmai, C. H. Baker, N. Lin et al., “Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect,” Neurosurgery, vol. 58, no. 2, pp. 365–372, 2006.
[19]  M. G. Abdelwahab, T. Sankar, M. C. Preul, and A. C. Scheck, “Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas,” Journal of Visualized Experiments, no. 57, Article ID e3403, 2011.
[20]  X. Ji, L. Cheng, F. Wei et al., “Noninvasive visualization of retinoblastoma growth and metastasis via bioluminescence imaging,” Investigative Ophthalmology and Visual Science, vol. 50, no. 12, pp. 5544–5551, 2009.
[21]  W. W. Overwijk and N. P. Restifo, “B16 as a mouse model for human melanoma,” Current Protocols in Immunology, vol. 20, p. 20.1, 2001.
[22]  D. E. Jenkins, Y. S. Hornig, Y. Oei, J. Dusich, and T. Purchio, “Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice,” Breast Cancer Research, vol. 7, no. 4, pp. R444–R454, 2005.
[23]  J.-B. Kim, K. Urban, E. Cochran et al., “Non-invasive detection of a small number of bioluminescent cancer cells in vivo,” PLoS ONE, vol. 5, no. 2, Article ID e9364, 2010.
[24]  A. E. Vernon, S. J. Bakewell, and L. A. Chodosh, “Deciphering the molecular basis of breast cancer metastasis with mouse models,” Reviews in Endocrine and Metabolic Disorders, vol. 8, no. 3, pp. 199–213, 2007.
[25]  K. Tao, M. Fang, J. Alroy, and G. G. Gary, “Imagable 4T1 model for the study of late stage breast cancer,” BMC Cancer, vol. 8, article 228, 2008.
[26]  J. E. Price, A. Polyzos, R. D. Zhang, and L. M. Daniels, “Tumorigenicity and metastatis of human breast carcinoma cell lines in nude mice,” Cancer Research, vol. 50, no. 3, pp. 717–721, 1990.
[27]  K. Wang, S. Xie, Y. Ren, H. Xia, X. Zhang, and J. He, “Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research,” Oncology Reports, vol. 27, no. 6, pp. 1981–1989, 2012.
[28]  C. T. Winkelmann, S. D. Figueroa, T. L. Rold, W. A. Volkert, and T. J. Hoffman, “Microimaging characterization of a B16-F10 melanoma metastasis mouse model,” Molecular Imaging, vol. 5, no. 2, pp. 105–114, 2006.
[29]  C. M. Deroose, A. De, A. M. Loening et al., “Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging,” Journal of Nuclear Medicine, vol. 48, no. 2, pp. 295–303, 2007.
[30]  D. E. Jenkins, Y. Oei, Y. S. Hornig et al., “Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 8, pp. 733–744, 2003.
[31]  F. Arguello, R. B. Baggs, and C. N. Frantz, “A murine model of experimental metastasis to bone and bone marrow,” Cancer Research, vol. 48, no. 23, pp. 6876–6881, 1988.
[32]  R. A. Barkhordar, E. D. Berston, and D. M. Ramos, “Cervical lymph node metastasis: model for study of Head/Neck melanoma,” European Journal of Cancer Part B, vol. 31, no. 1, pp. 49–52, 1995.
[33]  E. Frampas, C. Maurel, P. Thedrez, P. Remaud-Le Sa?c, A. Faivre-Chauvet, and J. Barbet, “The intraportal injection model for liver metastasis: advantages of associated bioluminescence to assess tumor growth and influences on tumor uptake of radiolabeled anti-carcinoembryonic antigen antibody,” Nuclear Medicine Communications, vol. 32, no. 2, pp. 147–154, 2011.
[34]  H.-T. Song, E. K. Jordan, B. K. Lewis et al., “Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation,” Journal of Translational Medicine, vol. 7, article 88, 2009.
[35]  M. Nogawa, T. Yuasa, S. Kimura et al., “Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models,” Cancer Letters, vol. 217, no. 2, pp. 243–253, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413