全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

DOI: 10.1155/2013/287697

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment. 1. Introduction In vivo bioluminescence imaging (BLI) is a technology that is frequently used in the study of animal tumor models [1]. It has been successfully used to follow many different types of tumors, such as prostate, breast, colon, ovarian, and lung cancers [2–8]. The in vivo BLI method is based on the action of luciferase on luciferin which produces light emission within the xenograft [9, 10]. The light-producing reaction requires molecular oxygen and ATP for the oxidation of luciferin to oxyluciferin. The light produced is transmitted through tissue and detected by a sensitive charge-coupled device (CCD) camera; the acquired data can be presented as qualitative pseudocolor images or as quantitative photon counts. A significant advantage of in vivo BLI is the ability to noninvasively obtain several data points from the same group of animals by repeated monitoring. In addition, the sensitivity of in vivo BLI permits the detection of very small tumors or metastases [8, 11]. A major concern is that solid tumors frequently outgrow their oxygen supply and can develop central hypoxia [12]. Alternatively, tumor hypoxia can develop as a result of treatment [13]. In these settings, oxygen available for the BLI reaction could be reduced to limiting levels, which would result in a reduced BLI signal (BLS) and underestimation of the actual tumor size [14]. In the process of developing an in vivo BLI-based mouse model of U87 glioma cells for evaluation of radiotherapy, we noted that these solid tumors frequently become transiently or chronically hypoxic and that, in this situation, tumor growth determined by BLI may be an underestimate. We

References

[1]  M. Edinger, Y. A. Cao, Y. S. Hornig et al., “Advancing animal models of neoplasia through in vivo bioluminescence imaging,” European Journal of Cancer, vol. 38, no. 16, pp. 2128–2136, 2002.
[2]  G. Caceres, R. Zankina, X. Y. Zhu et al., “Determination of chemotherapeutic activity in vivo by luminescent imaging of luciferase-transfected human tumors,” Anti-Cancer Drugs, vol. 14, no. 7, pp. 569–574, 2003.
[3]  D. E. Jenkins, Y. Oei, Y. S. Hornig et al., “Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 8, pp. 733–744, 2003.
[4]  C. D. Scatena, M. A. Hepner, Y. A. Oei et al., “Imaging of bioluminescent LNCaP-luc-M6, tumors: a new animal model for the study of metastatic human prostate cancer,” Prostate, vol. 59, no. 3, pp. 292–303, 2004.
[5]  C. Scheffold, M. Kornacker, Y. C. Scheffold, C. H. Contag, and R. S. Negrin, “Visualization of effective tumor targeting by CD8+ natural killer T cells redirected with bispecific antibody F(ab′)2HER2xCD3,” Cancer Research, vol. 62, no. 20, pp. 5785–5791, 2002.
[6]  S. Zeamari, G. Rumping, B. Floot, S. Lyons, and F. A. Stewart, “In vivo bioluminescence imaging of locally disseminated colon carcinoma in rats,” British Journal of Cancer, vol. 90, no. 6, pp. 1259–1264, 2004.
[7]  C. Zhang, Z. Yan, M. E. Arango, C. L. Painter, and K. Anderes, “Advancing bioluminescence imaging technology for the evaluation of anticancer agents in the MDA-MB-435-HAL-Luc mammary fat pad and subrenal capsule tumor models,” Clinical Cancer Research, vol. 15, no. 1, pp. 238–246, 2009.
[8]  D. Sano and J. N. Myers, “Xenograft models of head and neck cancers,” Head & Neck Oncology, vol. 1, article 32, 2009.
[9]  S. Gross and D. Piwnica-Worms, “Spying on cancer: molecular imaging in vivo with genetically encoded reporters,” Cancer Cell, vol. 7, no. 1, pp. 5–15, 2005.
[10]  J. S. Burgos, F. Guzman-Sanchez, I. Sastre, C. Fillat, and F. Valdivieso, “Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection,” Microbes and Infection, vol. 8, no. 5, pp. 1330–1338, 2006.
[11]  T. J. Sweeney, V. Mail?nder, A. A. Tucker et al., “Visualizing the kinetics of tumor-cell clearance in living animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 21, pp. 12044–12049, 1999.
[12]  S. Rockwell, I. T. Dobrucki, E. Y. Kim, S. T. Marrison, and V. T. Vu, “Hypoxia and radiation therapy: past history, ongoing research, and future promise,” Current Molecular Medicine, vol. 9, no. 4, pp. 442–458, 2009.
[13]  P. Yotnda, D. Wu, and A. M. Swanson, “Hypoxic tumors and their effect on immune cells and cancer therapy,” Methods in Molecular Biology, vol. 651, pp. 1–29, 2010.
[14]  K. O'Neill, S. K. Lyons, W. M. Gallagher, K. M. Curran, and A. T. Byrne, “Bioluminescent imaging: a critical tool in pre-clinical oncology research,” Journal of Pathology, vol. 220, no. 3, pp. 317–327, 2010.
[15]  J. K. Joseph, D. Bunnachak, T. J. Burke, and R. W. Schrier, “A novel method of inducing and assuring total anoxia during in vitro studies of O2 deprivation injury,” Journal of the American Society of Nephrology, vol. 1, no. 5, pp. 837–840, 1990.
[16]  K. W. Eley, S. H. Benedict, T. D. K. Chung et al., “The effects of pentoxifylline on the survival of human glioma cells with continuous and intermittent stereotactic radiosurgery irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 2, pp. 542–550, 2002.
[17]  D. J. Adams, “The impact of tumor physiology on camptothecin-based drug development,” Current Medicinal Chemistry, vol. 5, no. 1, pp. 1–13, 2005.
[18]  I. F. Tannock and D. Rotin, “Acid pH in tumors and its potential for therpeutic exploitation,” Cancer Research, vol. 49, no. 16, pp. 4373–4384, 1989.
[19]  L. Xu and I. J. Fidler, “Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells,” Cancer Research, vol. 60, no. 16, pp. 4610–4616, 2000.
[20]  D. J. Adams and L. R. Morgan, “Tumor physiology and charge dynamics of anticancer drugs: implications for camptothecin-based drug development,” Current Medicinal Chemistry, vol. 18, no. 9, pp. 1367–1372, 2011.
[21]  R. Rampling, G. Cruickshank, A. D. Lewis, S. A. Fitzsimmons, and P. Workman, “Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors,” International Journal of Radiation Oncology Biology Physics, vol. 29, no. 3, pp. 427–431, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413