全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of the Wavelet Transform for Interference Detection and Mitigation in Global Navigation Satellite Systems

DOI: 10.1155/2014/262186

Full-Text   Cite this paper   Add to My Lib

Abstract:

Radio frequency interference detection and mitigation are becoming of paramount importance due to the increasing number of services and applications based on the position obtained by means of Global Navigation Satellite Systems. A way to cope with such threats is the implementation in the receiver of advanced signal processing algorithm able to raise proper warning or improve the receiver performance. In this paper, we propose a method based on the Wavelet Transform able to split the useful signal from the interfering component in a transformed domain. The wavelet packet decomposition and proper statistical thresholds allow the algorithm to show very good performance in case of multiple pulse interference as well as in the case of narrowband interference, two scenarios in which traditional countermeasures might not be effective. 1. Introduction Reliable positioning and navigation are becoming imperative in a growing number of applications that are being developed for public services and safety critical purposes. As a consequence, satellite and radio navigation is evolving in an accelerating pace and it is becoming a pervasive technology in a large number of consumer and professional devices. For such a reason, parallel to the development of techniques able to improve the positioning accuracy, the research is becoming of paramount importance to improve the robustness of the positioning methodologies in order to make sure that the navigation is trustworthy and the risks and threats are properly accounted for. As far as Global Navigation Satellite Systems (GNSS) based techniques, intentional or unintentional interference represents one of the main threats to be considered. GNSS receiver operation can be easily disrupted by interfering signal due to the extreme weakness of the GNSS signals reaching the GNSS user antenna. In fact, the presence of undesired RFI and other channel impairments can result in degraded navigation accuracy or complete loss of receiver tracking [1]. Furthermore, due to the lack of frequency allocations, the majority of the interference issues come from the presence of other communication systems which broadcast strong signals on frequencies within or located near the GNSS frequency bands. As an example, the terrestrial Digital Video Broadcasting (DVB-T) system may represent a real threat for the GNSS receiver operation. In fact, nonlinearity distortion generated in the DVB-T transmitter amplifier may lead to the generation of harmonics in the GPS L1 (and thus Galileo E1) frequency band. In [2] a set of on-field experiments aiming at

References

[1]  F. Dovis, L. Musumeci, N. Linty, and M. Pini, “Recent trends in interference mitigation and spoofing detection,” International Journal of Embedded and Real-Time Communication Systems, vol. 3, pp. 1–17, 2012.
[2]  B. Motella, M. Pini, and F. Dovis, “Investigation on the effect of strong out-of-band signals on global navigation satellite systems receivers,” GPS Solutions, vol. 12, no. 2, pp. 77–86, 2008.
[3]  S. Savasta, GNSS localization techniques in interfered environment [Ph.D. dissertation], Politecnico di Torino, 2010.
[4]  C. ODriscoll, M. Rao, D. Borio et al., “Compatibility analysis between LigthSquared signals and L1/E1 GNSS reception,” in Proceedings of the IEEE/ION Position Location and Navigation Symposium (PLANS '12), pp. 447–454, Myrtle Beach, SC, USA, April 2012.
[5]  M. D. Angelis, R. Fantacci, S. Menci, and C. Rinaldi, “An analysis of air traffic control systems interference impact on Galileo Aeronautics,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '05), San Diego, Calif, USA, January 2005.
[6]  L. Musumeci, J. Samson, and F. Dovis, “Experimental assessment of distance measuring equipment and tactical air navigation interference on GPS L5 and Galileo E5a frequency bands,” in Proceedings of the 6th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC '12), pp. 1–8, Noordwijk, The Netherlands, December 2012.
[7]  D. Borio, C. ODriscoll, and J. Fortuny, “GNSS jammers: effects and countermeasures,” in Proceedings of the 6th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC '12), pp. 1–7, Noordwijk, The Netherlands, December 2012.
[8]  D. Borio, “GNSS acquisition in the presence of continuous wave interference,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 47–60, 2010.
[9]  A. Konovaltsev, D. S. De Lorenzo, A. Hornbostel, and P. Enge, “Mitigation of continuous and pulsed radio interference with GNSS antenna arrays,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '08), pp. 1291–1300, Savannah, Ga, USA, September 2008.
[10]  F. Bastide, D. Akos, C. Macabiau, and B. Roturier, “Automatic Gain Control (AGC) as an interference assessment tool,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS '03), pp. 2042–2053, Portland, Ore, USA, September 2003.
[11]  S. Savasta, F. Dovis, R. Lesca, D. Margaria, and B. Motella, “On the interference mitigation based on ADC parameters tuning,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS '08), pp. 689–695, May 2008.
[12]  F. Bastide, E. Chatre, and C. Macabiau, “GPS interference detection and identification using multicorrelator receivers,” in Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS '01), pp. 872–881, Salt Lake City, Utah, USA, September 2001.
[13]  R. J. Erlandson, T. Kim, C. Hegarty, and A. J. van Dierendonck, “Pulsed RFI effects on aviation operations using GPS L5,” in Proceedings of the National Technical Meeting of The Institute of Navigation (NTM '04), pp. 1063–1076, San Diego, Calif, USA, January 2004.
[14]  C. Hegarty, A. V. Dierendonck, D. Bobyn, M. Tran, and J. Grabowski, “Suppression of pulsed interference through blanking,” in Proceedings of the IAIN World Congress and the 56th Annual Meeting of The Institute of Navigation, pp. 399–408, San Diego, Calif, USA, June 2000.
[15]  F. Bastide, E. Chatre, C. Macabiau, and B. Roturier, “GPS L5 and GALILEO E5a/E5b signal-to-noise density ratio degradation due to DME/TACAN signals: simulations and theoretical derivation,” in Proceedings of the National Technical Meeting of The Institute of Navigation (NTM '04), pp. 1049–1062, San Diego, Calif, USA, January 2004.
[16]  G. X. Gao, “DME/TACAN interference and its mitigation in L5/E5 bands,” in Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '07), pp. 1191–1200, Fort Worth, Tex, USA, September 2007.
[17]  M. Raimondi, O. Julien, C. Macabiau, and F. Bastide, “Mitigating pulsed interference using frequency domain adaptive filtering,” in Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '06), pp. 2251–2260, Fort Worth, Tex, USA, September 2006.
[18]  S. Savasta, L. L. Presti, and M. Rao, “Interference mitigation in GNSS receivers by a time-frequency approach,” in Proceedings of the IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 415–438, January 2013.
[19]  E. Anyaegbu, G. Brodin, J. Cooper, E. Aguado, and S. Boussakta, “An integrated pulsed interference mitigation for GNSS receivers,” Journal of Navigation, vol. 61, no. 2, pp. 239–255, 2008.
[20]  M. Paonni, J. G. Jang, B. Eissfeller et al., “Innovative interference mitigation approaches: analytical analysis, implementation and validation,” in Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC '10), Noordwijk, The Netherlands, December 2010.
[21]  M. Elhabiby, A. El-Ghazouly, and N. El-Sheimy, “A new wavelet-based multipath mitigation technique,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '08), pp. 885–891, Savannah, Ga, USA, September 2008.
[22]  Y. Xiong, X. L. Ding, W. J. Dai, W. Chen, and D. Huang, “Mitigation of multipath effects based on GPS phase frequency feature analysis for deformation monitoring applications,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '04), pp. 268–276, Long Beach, Calif, USA, September 2004.
[23]  X. Linyuan and L. Jingnan, “Approach for multipath reduction using wavelet algorithm,” in Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS '01), Salt Lake City, Utah, USA, September 2001.
[24]  A. El-Ghazouly, “The aid of wavelets correlator in carrier phase multipath reduction and motion detection,” in Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '09), pp. 1142–1149, Savannah, Ga, USA, September 2009.
[25]  E. M. De Souza, “Multipath reduction from GPS double differences using wavelets: how far can we go?” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '04), pp. 2563–2571, Long Beach, Calif, USA, September 2004.
[26]  M. Elhabiby, A. El-Ghazouly, and N. El-Sheimy, “Singularity detection technique for GPS cycle slip in wavelets domain,” in Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '09), pp. 2371–2379, Savannah, Ga, USA, September 2009.
[27]  J. Wang, J. Wang, and C. Roberts, “Reducing carrier phase errors with EMD-Wavelet for precise GPS positioning,” in Proceedings of the Institute of Navigation National Technical Meeting (NTM '07), pp. 919–928, San Diego, Calif, USA, January 2007.
[28]  S. M. Martin, J. J. Dawkins, W. E. Travis, and D. M. Bevly, “Terrain characterization and feature extraction for automated convoys,” in Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '10), pp. 256–265, Portland, Ore, USA, September 2010.
[29]  P. Vaydianathan, Multirate Systems and Filter Banks, Signal Processing Series, Prentice-Hall, 1993.
[30]  S. G. Mallat, “Theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.
[31]  M. Fantino, M. Nicola, and A. Molino, “N-Gene GNSS receiver: benefits of software radio in navigation,” in Proceedings of the European Navigation Conference (ENC-GNSS '09), Naples, Italy, May 2009.
[32]  J. Soubielle, W. Vigneau, J. Samson, D. J. Banos, and L. Musumeci, “Description of an Interference Test Facility (ITF) to assess GNSS receivers performance in presence of interference,” in Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC '10), December 2010.
[33]  D. Margaria, E. Falletti, B. Motella, M. Pini, and G. Povero, “N-FUELS, a GNSS educational tool for simulation and analysis of a variety of signal in space,” in Proceedings of the European Navigation Conference (ENC-GNSS '10), Braunschweig, Germany, October 2010.
[34]  L. Musumeci and F. Dovis, “Performance assessment of wavelet based technique in mitigating narrow-band interference,” in Proceedings of the International Conference on Localization and GNSS (ICL-GNSS '13), pp. 1–6, Turin, Italy, June 2013.
[35]  F. Dovis, Wavelet based designed of digital multichannel communications systems [Ph.D. dissertation], Politecnico di Torino, 1999.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133