全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks

DOI: 10.1155/2013/570964

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an extended Kalman filter-based hybrid indoor position estimation technique which is based on integration of fingerprinting and trilateration approach. In this paper, Euclidian distance formula is used for the first time instead of radio propagation model to convert the received signal to distance estimates. This technique combines the features of fingerprinting and trilateration approach in a more simple and robust way. The proposed hybrid technique works in two stages. In the first stage, it uses an online phase of fingerprinting and calculates nearest neighbors (NN) of the target node, while in the second stage it uses trilateration approach to estimate the coordinate without the use of radio propagation model. The distance between calculated NN and detective access points (AP) is estimated using Euclidian distance formula. Thus, distance between NN and APs provides radii for trilateration approach. Therefore, the position estimation accuracy compared to the lateration approach is better. Kalman filter is used to further enhance the accuracy of the estimated position. Simulation and experimental results validate the performance of proposed hybrid technique and improve the accuracy up to 53.64% and 25.58% compared to lateration and fingerprinting approaches, respectively. 1. Introduction Position estimation is the process which calculates object position with reference to some coordinate system. The position of object can be specified as absolute coordinates consisting of (latitude, longitude) and (x, y) coordinates or in a symbolic form such as room number 1 of the 2nd floor or specific location represented by name. Global positioning system (GPS) is the world first position estimation system which was originally developed by the US Department of Defense for military purpose in order to track the movement of enemies [1]. GPS was originally designed for navigation purpose to track the movement of objects from satellites. However, this technology is used for outdoor applications. The signals transmitted from GPS satellites do not penetrate inside the buildings; hence, it is not applicable for indoor environment [2]. In order to provide an alternate solution for indoor environment, the research community is focusing on low-cost and highly accurate indoor position estimation techniques which can be used for indoor environment [3]. The applications of indoor position estimation systems are different from GPS and not limited to navigation or object tracking. Also apart from this, GPS provides an accuracy from 5 to 10 meters, which is

References

[1]  F. Forno, G. Malnati, and G. Portelli, “Design and implementation of a bluetooth ad hoc network for indoor positioning,” IEE Proceedings: Software, vol. 152, no. 5, pp. 223–228, 2005.
[2]  G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007.
[3]  M. P. Kodde, “Bluetooth communication and positioning for location based services,” Report For the Course Location Based Services, TU-Delft, The Netherlands, 2005.
[4]  K. Nguyen, Robot-based evaluation of bluetooth fingerprinting [M.S. thesis], Queens' College Computer Laboratory, University of Cambridge, UK, 2011.
[5]  Bluetooth Special Intrest Group, “Fast-facts,” 2011.
[6]  B. Li, A. Dempster, C. Rizos, and J. Barnes, “Hybrid method for localization using wlan,” in Proceedings of the International Conferene on Spatial Intelligence, Innovation and Praxis, pp. 297–303.
[7]  L. Dong and W. Jiancheng, “Research of indoor local positioning based on bluetooth technology,” in Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, (WiCOM '09), Beijing, China, September 2009.
[8]  M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard,” in Proceedings of the International Conference on Wireless Sensor Networks (IASTED '06), p. 6s, Alberta, Canada, July 2006.
[9]  L. Peneda, A. Azenha, and A. Carvalho, “Trilateration for indoors positioning within the framework of wireless communications,” in Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society (IECON '09), pp. 2732–2737, Porto, Portugal, November 2009.
[10]  J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer, vol. 34, no. 8, pp. 57–66, 2001.
[11]  D. Zhang, F. Xia, Z. Yang, L. Yao, and W. Zhao, “Localization technologies for indoor human tracking,” in Proceedings of the 5th International Conference on Future Information Technology (FutureTech '10), Busan, Republic of Korea, May 2010.
[12]  S. Zhou and J. K. Pollard, “Position measurement using bluetooth,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 555–558, 2006.
[13]  J. Yang and Y. Chen, “Indoor localization using improved rss-based lateration methods,” in Proceedings of the IEEE Global Telecommunications Conference GLOBECOM '09), Honolulu, Hawaii, USA, December 2009.
[14]  C. Alippi and G. Vanini, “A RSSI-based and calibrated centralized localization technique for wireless sensor networks,” in Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom '06), pp. 306–311, Pisa, Italy, March 2006.
[15]  E.-E. Lau and W.-Y. Chung, “Enhanced RSSI-based real-time user location tracking system for indoor and outdoor environments,” in Proceedings of the 2nd International Conference on Convergent Information Technology (ICCIT '07), pp. 1213–1218, Republic of Korea, November 2007.
[16]  W. Xinwei, B. Ole, L. Rainer, and P. Steffen, “Localization in wireless ad-hoc sensor networks using multilateration with RSSI for logistic applications,” Procedia Chemistry, vol. 1, no. 1, pp. 461–464, 2009.
[17]  A. V. Bosisio, “Performances of an RSSI-based positioning and tracking algorithm,” in Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN '11), Guimaraes, Portugal, September 2011.
[18]  A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 6–12, 2007.
[19]  S. Pandey and P. Agrawal, “Distance measurement model based on RSSI in wsn,” Wireless Sensor Network, Scientific Research, vol. 29, no. 7, pp. 606–6011, 2010.
[20]  H. Jeffrey and B. Gaetano, “Location sensing techniques,” Tech. Rep. UW CSE, 2001-07- 30, vol. 34, 2001.
[21]  R. M. Pellegrini, S. Persia, D. Volponi, and G. Marcone, “RF propagation analysis for ZigBee Sensor Network using RSSI measurements,” in Proceedings of the 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE '11), Chennai, India, March 2011.
[22]  S. William and J. Murphy, Determination of a position using approximate distances and trilateration [M.S. thesis], Trustees of the Colorado School of Mines, Colo, USA, 2007.
[23]  K. Langendoen and N. Reijers, “Distributed localization in wireless sensor networks: a quantitative comparison,” Computer Networks, vol. 43, no. 4, pp. 499–518, 2003.
[24]  E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4,” in Proceedings of the European Wireless Conference (EW '10), pp. 71–77, Lucca, Italy, April 2010.
[25]  X. Kuang and H. Shao, “Maximum likelihood localization algorithm using wireless sensor networks,” in Proceedings of the 1st International Conference on Innovative Computing, Information and Control (ICICIC '26), pp. 263–266, 2003.
[26]  G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks,” in Proceedings of the 3rd Workshop on Real-World Wireless Sensor Networks (REALWSN '08), pp. 1–5, April 2008.
[27]  R. Priwgharm and P. Chemtanomwong, “A comparative study on indoor localization based on RSSI measurement in wireless sensor network,” in Proceedings of the 8th International Joint Conference on Computer Science and Software Engineering (JCSSE '11), pp. 1–6, May 2011.
[28]  C. Wang and X. Li, “Sensor localization under limited measurement capabilities,” IEEE Network, vol. 21, no. 3, pp. 16–23, 2007.
[29]  J. Yim, S. Jeong, K. Gwon, and J. Joo, “Improvement of Kalman filters for WLAN based indoor tracking,” Expert Systems with Applications, vol. 37, no. 1, pp. 426–433, 2010.
[30]  P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM '00), pp. 775–784, March 2000.
[31]  W. Liu, S. Gong, Y. Zhou, and P. Wang, “Two-phase indoor positioning technique in wireless networking environment,” in Proceedings of the 2010 IEEE International Conference on Communications (ICC '10), Cape Town, South Africa, May 2010.
[32]  X. Nguyen and T. Rattentbury, “Localization algorithms for sensor networks using RF signal strength,” Tech. Rep., University of California at Berkeley, 2003.
[33]  J. Xu, H. Luo, F. Zhao, R. Tao, and Y. Lin, “Dynamic indoor localization techniques based on RSSI in WLAN environment,” in Proceedings of the 6th International Conference on Pervasive Computing and Applications (ICPCA '11), pp. 417–421, Port Elizabeth, South Africa, October 2011.
[34]  J. Lloret, J. Tomas, M. Garcia, and A. Canovas, “A hybrid stochastic approach for self-location of wireless sensors in indoor environments,” Sensors, vol. 9, no. 5, pp. 3695–3712, 2009.
[35]  H. Wang and F. Jia, “A hybrid modeling for WLAN positioning system,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '07), pp. 2152–2155, Shanghai, China, September 2007.
[36]  J. Lloret, J. Tomas, M. Garcia, and A. Canovas, “A hybrid stochastic approach for self-location of wireless sensors in indoor environments,” Sensors, vol. 9, no. 5, pp. 3695–3712, 2009.
[37]  K. Antti, H. Marko, L. Helena, and H. Timo, “Experiments on local positioning with bluetooth,” in Proceedings of the International Conference on Information Technology: Computers and Communications, pp. 297–303, IEEE Computer Society, 2003.
[38]  W. Ting and B. Scott, “Indoor localization method comparison: fingerprinting and trilateration algorithm,” International Journal of Control. In press.
[39]  W. Ting and B. Scott, “Indoor localization method comparison: fingerprinting and trilateration algorithm,” http://rose.geog.mcgill.ca/ski/system/files/fm/2011/Wei.pdf.
[40]  R. Priwgharm and P. Chemtanomwong, “A comparative study on indoor localization based on RSSI measurement in wireless sensor network,” in Proceedings of the 8th International Joint Conference on Computer Science and Software Engineering (JCSSE '11), pp. 1–6, Nakhon Pathom, Thailand, May 2011.
[41]  B. Deen, A software solution for absolute position estimation using wlan for robotics [M.S. thesis], EEMCS/Electrical Engineering Control Engineeringy, University of Twente, Netherlands, 2008.
[42]  National Academy of Engineering, “Biography of Rudolf Kalman,” 2011.
[43]  K. Murphy, “Kalman filter toolbox for matlab,” 2004.
[44]  B. Dawes and K.-W. Chin, “A comparison of deterministic and probabilistic methods for indoor localization,” Journal of Systems and Software, vol. 84, no. 3, pp. 442–451, 2011.
[45]  A. K. M. M. Hossain and W.-S. Soh, “A comprehensive study of bluetooth signal parameters for localization,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '07), Athens, Greece, September 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133