全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Modeling of the Interaction of Solitary Waves and Submerged Breakwaters with Sharp Vertical Edges Using One-Dimensional Beji & Nadaoka Extended Boussinesq Equations

DOI: 10.1155/2013/691767

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using one-dimensional Beji & Nadaoka extended Boussinesq equation, a numerical study of solitary waves over submerged breakwaters has been conducted. Two different obstacles of rectangular as well as circular geometries over the seabed inside a channel have been considered in view of solitary waves passing by. Since these bars possess sharp vertical edges, they cannot directly be modeled by Boussinesq equations. Thus, sharply sloped lines over a short span have replaced the vertical sides, and the interactions of waves including reflection, transmission, and dispersion over the seabed with circular and rectangular shapes during the propagation have been investigated. In this numerical simulation, finite element scheme has been used for spatial discretization. Linear elements along with linear interpolation functions have been utilized for velocity components and the water surface elevation. For time integration, a fourth-order Adams-Bashforth-Moulton predictor-corrector method has been applied. Results indicate that neglecting the vertical edges and ignoring the vortex shedding would have minimal effect on the propagating waves and reflected waves with weak nonlinearity. 1. Introduction Boussinesq type equations are among the most practical mathematical models used in offshore engineering. These equations include nonlinear terms as well as dispersion terms. Thus, they are one of the most robust tools for hydrodynamic study of nearshore waves. During the years from 1871 to 1872, Boussinesq introduced these equations by adding dispersion effects to the shallow water equations originally known as Saint Venant. These equations have a hyperbolic structure with derivatives of high order in order to numerically model the dispersion-based physics. Peregrine [1] introduced what is known as the basic type of Boussinesq equations. Using Boussinesq equations for inviscid fluids, continuity equation with integral representation and applying respective boundary conditions, the basic Peregrine-Boussinesq equations for long waves over variable seabeds can be derived. Many efforts have been made for the development of Boussinesq equations. These efforts have been made with the aim of enhancing dispersion (ratio of water depth to wave length) characteristics of the equations in order to preserve their validity for deep waters applications. As one of the first attempts, Witting [2] used the momentum equations on the integrated depth in one dimension so he could present practical equations based on the velocity terms that were defined on the free surface. In the governing

References

[1]  D. H. Peregrine, “Calculations of the development of an undular bore,” Journal of Fluid Mechanics, vol. 25, no. 2, pp. 321–330, 1966.
[2]  J. M. Witting, “A unified model for the evolution nonlinear water waves,” Journal of Computational Physics, vol. 56, no. 2, pp. 203–236, 1984.
[3]  P. A. Madsen, R. Murray, and O. R. S?rensen , “A new form of the Boussinesq equations with improved linear dispersive properties,” Coastal Engineering, vol. 15, pp. 371–388, 1991.
[4]  M. B. Abbott, A. D. McCowan, and I. R. Warren, “Accuracy of short-wave numerical models,” Journal of Hydraulic Engineering, vol. 110, no. 10, pp. 1287–1301, 1984.
[5]  O. Nwogu, “Alternative form of Boussinesq equations for nearshore wave propagation,” Journal of Waterway, Port, Coastal & Ocean Engineering, vol. 119, no. 6, pp. 618–638, 1993.
[6]  S. Beji and K. Nadaoka, “A formal derivation and numerical modelling of the improved boussinesq equations for varying depth,” Ocean Engineering, vol. 23, no. 8, pp. 691–704, 1996.
[7]  D. H. Peregrine, “Long waves on a beach,” Journal of Fluid Mechanics, vol. 27, pp. 815–827, 1967.
[8]  H. A. Sch?ffer, P. A. Madsen, and R. Deigaard, “A Boussinesq model for waves breaking in shallow water,” Coastal Engineering, vol. 20, no. 3-4, pp. 185–202, 1993.
[9]  S. Beji and J. A. Battjes, “Numerical simulation of nonlinear wave propagation over a bar,” Coastal Engineering, vol. 23, no. 1-2, pp. 1–16, 1994.
[10]  M. W. Dingemans, “Comparison of computations with Boussinesq-like models and laboratory measurements,” Technical Report H1684.12, MAST G8M Coastal Morphodynamics Research Programme, 1994.
[11]  G. Wei and J. T. Kirby, “Time-dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal & Ocean Engineering, vol. 121, no. 5, pp. 251–261, 1995.
[12]  T. Ohyama, W. Kioka, and A. Tada, “Applicability of numerical models to nonlinear dispersive waves,” Coastal Engineering, vol. 24, no. 3-4, pp. 297–313, 1995.
[13]  Ge Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya, “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” Journal of Fluid Mechanics, vol. 294, pp. 71–92, 1995.
[14]  D. Ambrosi and L. Quartapelle, “A Taylor-Galerkin method for simulating nonlinear dispersive water waves,” Journal of Computational Physics, vol. 146, no. 2, pp. 546–569, 1998.
[15]  M. Walkley and M. Berzins, “A finite element method for the one-dimensional extended Boussinesq equations,” International Journal For Numerical Methods in Fluids, vol. 29, pp. 143–157, 1999.
[16]  Y. S. Li, S. X. Liu, Y. X. Yu, and G. Z. Lai, “Numerical modeling of Boussinesq equations by finite element method,” Coastal Engineering, vol. 37, no. 2, pp. 97–122, 1999.
[17]  M. Walkley and M. Berzins, “A finite element method for the two-dimensional extended Boussinesq equations,” International Journal for Numerical Methods in Fluids, vol. 39, no. 10, pp. 865–886, 2002.
[18]  O. R. S?rensen, H. A. Sch?ffer, and L. S?rensen, “Boussinesq type modeling using an unstructured finite element technique,” Coastal Engineering, vol. 50, pp. 181–198, 2004.
[19]  S. B. Woo and P. L. F. Liu, “Finite-element model for modified Boussinesq equations. II: applications to nonlinear harbor oscillations,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 130, no. 1, pp. 17–28, 2004.
[20]  P. Lin and C. Man, “A staggered-grid numerical algorithm for the extended Boussinesq equations,” Applied Mathematical Modelling, vol. 31, no. 2, pp. 349–368, 2007.
[21]  P. Ghadimi, M. H. Jabbari, and A. Reisinezhad, “Calculation of solitary wave shoaling on plane beaches by extended Boussinesq equations,” Engineering Applications of Computational Fluid Mechanics, vol. 2, no. 2, pp. 1–29, 2012.
[22]  S. Liu, Z. Sun, Li, and j, “An unstructured FEM model based on Boussinesq equations and its application to the calculation of multidirectional wave run-up in a cylinder group,” Applied Mathematical Modelling, vol. 36, no. 9, pp. 4146–4164, 2011.
[23]  C. L. Ting, M. C. Lin, and C. M. Hsu, “Spatial variations of waves propagating over a submerged rectangular obstacle,” Ocean Engineering, vol. 32, no. 11-12, pp. 1448–1464, 2005.
[24]  Y. Yao, Z. Huang, S. G. Monismith, and E. Y. M. Lo, “1DH Boussinesq modeling of wave transformation over fringing reefs,” Ocean Engineering, vol. 47, pp. 30–42, 2012.
[25]  P. Ghadimi, M. H. Jabbari, and A. Reisinezhad, “Finite element modeling fo one-dimensional boussinesq-equations,” International Journal of Modeling, Simulation, and Scientific Computing, vol. 2, no. 2, pp. 207–235, 2011.
[26]  M. J. Cooker, D. H. Peregrine, C. Vidal, and J. W. Dold, “Interaction between a solitary wave and a submerged semicircular cylinder,” Journal of Fluid Mechanics, vol. 215, pp. 1–22, 1990.
[27]  S. T. Grilli, M. A. Losada, and F. Martin, “Wave impact forces on mixed breakwaters,” Coastal Engineering, vol. 88, pp. 1–14, 1992.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413