全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

DOI: 10.1155/2013/876474

Full-Text   Cite this paper   Add to My Lib

Abstract:

Small core As2Se3-based photonic crystal fibers (PCFs) are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3?μm, 5?μm, and 3.2?μm were calculated for hole-to-hole spacings 3.5?μm, 4.5?μm, and 5.5?μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8?μm. 1. Introduction Supercontinuum generation (SCG) brings into play the nonlinear effects of Kerr and Raman, in combination with dispersion profiles of optical fibers, to broaden the bandwidth of an optical signal [1, 2]. Silica fibers have been the main source of SCG to date [3]. However, the longest wavelength that can be generated in silica fibers is below 2.5?μm due to material losses. Thus, SCG beyond this wavelength requires fibers with longer infrared (IR) transmission windows, along with an appropriate choice of dispersion and nonlinearity [4, 5]. Midinfrared photonics is seeing an increasing number of applications across a variety of disciplines such as astronomy and spectroscopy [6]. Price et al. [7] have shown theoretically that it is possible to generate a mid-IR supercontinuum from 2 to 5?μm using a bismuth-glass photonic crystal fiber (PCF). Domachuk et al. [8] have experimentally generated a mid-IR supercontinuum with a spectral range of 0.8 to 4.9?μm using a tellurite PCF with the same structure. Shaw et al. have reported experimental work that demonstrates supercontinuum generation from 2.1 to 3.2?μm in an As2Se3-based chalcogenide PCF with one ring of air holes in a hexagonal structure [9]. Hu et al. presented results of optimization of the SC bandwidth in an As2Se3-based PCF [10]. Compared to tellurite glass, chalcogenide glasses have shown their greater interest because of their larger refractive index and higher nonlinear index, leading to a greater modal confinement and a higher nonlinearity [11, 12]. In a recent paper, we studied SCG in one specific As2Se3-based PCF structure having a hole diameter ?μm and a hole-to-hole spacing ?μm [13]. However, such a study remains incomplete because it does not answer the question how a specific set of values for various dispersion coefficients can affect the generated bandwidth of the SC. In this paper we identify specific dispersion profiles and correlate them with generated SC bandwidth. Our numerical simulations indicate that designed

References

[1]  J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800?nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000.
[2]  J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nature Photonics, vol. 3, no. 2, pp. 85–90, 2009.
[3]  J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics, vol. 78, no. 4, pp. 1135–1184, 2006.
[4]  S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Optics Communications, vol. 282, no. 17, pp. 3448–3455, 2009.
[5]  R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, “Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers,” Optics Express, vol. 18, no. 25, pp. 26666–26674, 2010.
[6]  A. B. Fedotov, A. M. Zheltikov, A. A. Ivanov et al., “Supercontinuum-generating holey fibers as new broadband sources for spectroscopic applications,” Laser Physics, vol. 10, no. 3, pp. 723–726, 2000.
[7]  J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem et al., “Mid-IR supercontinuum generation from nonsilica microstruetured optical fibers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 3, pp. 738–749, 2007.
[8]  P. Domachuk, N. A. Wolchover, M. Cronin-Golomb et al., “Over 4000?nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Optics Express, vol. 16, no. 10, pp. 7161–7168, 2008.
[9]  L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Proceedings of the Advanced Solid-State Photonics (ASSP '05), paper TuC5, pp. 864–868, Vienna, Austria, February 2005.
[10]  J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Optics Express, vol. 18, no. 7, pp. 6722–6739, 2010.
[11]  J. A. Savage, “Optical properties of chalcogenide glasses,” Journal of Non-Crystalline Solids, vol. 47, no. 1, pp. 101–116, 1982.
[12]  G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Linear optical characterization of chalcogenide glasses,” Optics Communications, vol. 230, no. 4–6, pp. 331–336, 2004.
[13]  R. Cherif, A. B. Salem, M. Zghal et al., “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Optical Engineering, vol. 49, no. 9, Article ID 095002, 6 pages, 2010.
[14]  R. Cherif, M. Zghal, I. Nikolov, and M. Danailov, “High energy femtosecond supercontinuum light generation in large mode area photonic crystal fiber,” Optics Communications, vol. 283, no. 21, pp. 4378–4382, 2010.
[15]  M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Optical Engineering, vol. 46, no. 12, Article ID 128002, 7 pages, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133