全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generation of Bessel Surface Plasmon Polaritons in a Finite-Thickness Metal Film

DOI: 10.1155/2013/253692

Full-Text   Cite this paper   Add to My Lib

Abstract:

A theory of generation of low- and high-index Bessel surface plasmon polaritons and their superposition in a metal film of a finite thickness is developed. Correct analytical expressions are obtained for the field of two families of Bessel surface plasmon polariton modes formed inside and outside the metal layer. The intensity distribution near the boundary of the layer has been calculated and analyzed. A scheme for the experimental realization of a superposition of Bessel surface plasmon polaritons is suggested. Our study demonstrates that it is feasible to use the superposition of Bessel surface plasmon polaritons as a virtual tip for near-field optical microscopy with a nanoscale resolution. 1. Introduction Surface plasmon polaritons (SPPs) are surface electromagnetic waves related to collective electron oscillations near the metal surface excited by light [1–3]. These fields arise under the resonance condition, and due to such nature of excitation, they are attractive in the context of enhancing the resolution of imaging systems substantially by increasing the amplitude of evanescent waves [4–6]. In 1987, Durnin et al. suggested a new type of waves, namely, Bessel light beams (BLBs), that kept the transverse spot size unchanged much longer than the Rayleigh range [7, 8]. Such a localized radiation mode was called the nondiffracting beam (or the diffraction-free beam). The transverse profile of the amplitude of this beam is described by a Bessel function of the first kind. In the domain of spatial frequencies, BLB is represented as a superposition of plane waves which are wrapped around a conical surface. Within the last decades, an intensive study of the scalar and vector BLBs has been made theoretically and experimentally (see, e.g., [9–18]). Bessel light beams are used in numerous applications, such as the optical manipulation of microsized particles [19], the fabrication of long polymer fiber induced by the photopolymerization [20] and microchanneling by structural modification in glass materials [21] the enhancement of energy gain in inverse-free electron lasers and inverse Cherenkov accelerators [22]. The authors of [23] pioneered in obtaining solutions of Maxwell’s equations which correspond to evanescent BLBs formed in the condition of the internal total reflection in an optically less dense dielectric medium. A more detailed theory of evanescent Bessel beams is presented in [24–29]. These beams exponentially decay while moving off the surface but retain their original transversal shape. In those investigations, of particular interest was the

References

[1]  H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, Germany, 1988.
[2]  E. N. Economou, “Surface plasmons in thin films,” Physical Review, vol. 182, pp. 539–554, 1969.
[3]  J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Physical Review B, vol. 33, no. 8, pp. 5186–5201, 1986.
[4]  W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.
[5]  A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plas-mon polaritons,” Physics Reports, vol. 408, pp. 131–134, 2005.
[6]  J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Physical Review B, vol. 60, no. 11, pp. 8359–8367, 1999.
[7]  J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” Journal of the Optical Society of America A, vol. 4, pp. 651–654, 1987.
[8]  J. Durnin, J. J. Muceli, and J. H. Eberly, “Diffraction-free beams,” Physical Review Letters, vol. 58, pp. 1499–1501, 1987.
[9]  P. Sprangle and B. Hafizi, “Comment on nondiffracting beams,” Physical Review Letters, vol. 66, pp. 837–839, 1991.
[10]  Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted non-diffracting beam,” Optics Communications, vol. 151, pp. 207–211, 1998.
[11]  Y. Lin, W. Seka, J. H. Eberly, et al., “Experimental investigation of Bessel beam characteristics,” Applied Optics, vol. 31, pp. 2708–2713, 1992.
[12]  D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics, vol. 46, pp. 15–28, 2005.
[13]  J. Turunen and A. T. Friberg, “Self-imaging and propagation-invariance in electromagnetic fields,” Pure and Applied Optics, vol. 2, pp. 51–60, 1993.
[14]  R. Horak, Z. Bouchal, and J. Bajer, “Nondiffracting stationary electromagnetic field,” Optics Communications, vol. 133, pp. 315–327, 1997.
[15]  T. A. Fadeyeva, C. N. Alexeyev , P. M. Anischenko, and A. V. Volyar, “Engineering of the space-variant linear polarization of vortex-beams in biaxially induced crystals,” Applied Optics, vol. 51, pp. C224–C230, 2012.
[16]  I. A. Litvin and A. Forbes, “Bessel Gauss resonator with internal amplitude filter,” Optics Communications, vol. 281, pp. 2385–2390, 2008.
[17]  V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Optics Communications, vol. 282, no. 10, pp. 1998–2008, 2009.
[18]  S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, “Transformation of high-order Bessel vortices in one-dimensional photonic crystals,” Journal of Optics A, vol. 12, no. 1, Article ID 015704, 12 pages, 2010.
[19]  V. Garcés-Chávez, D. McGloin, H. Melville, et al., “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature, vol. 419, pp. 145–147, 2002.
[20]  J. Jerel, T. Cizmar, V. Nedela, and P. Zemanek, “Formation of long and thin polymer fiber using nondiffracting beam,” Optics Express, vol. 14, pp. 8506–8515, 2006.
[21]  M. K. Bhuyan, F. Courvoisier, P. A. Lacourt et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Optics Express, vol. 18, no. 2, pp. 566–574, 2010.
[22]  B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Physical Review E, vol. 55, no. 3, pp. 3539–3545, 1997.
[23]  S. Rushin and A. Leizer, “Evanescent Bessel beams,” Journal of the Optical Society of America A, vol. 15, pp. 1139–1143, 1998.
[24]  S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, “Features of evanescent Bessel light beams formed in structures containing a dielectric layer,” Optics Communications, vol. 283, no. 20, pp. 3860–3868, 2010.
[25]  A. M. Goncharenko, N. A. Khilo, and E. S. Petrova, “Evanescent Bessel light beams,” in Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, vol. 4517 of Proceedings of SPIE, pp. 95–99, 2001.
[26]  Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Optics Letters, vol. 31, no. 11, pp. 1726–1728, 2006.
[27]  J. Xi, Q. Li, and J. Wang, “Numerical simulation of evanescent Bessel beams and apodization of evanescent field in near-field optical virtual probe,” in Nanophotonics, Nanostructure, and Nanometrology, Proceedings of SPIE, pp. 42–51, 2005.
[28]  A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: imbert–Fedorov shift and intensity transformation,” Journal of Optics A, vol. 10, Article ID 075006, 7 pages, 2008.
[29]  M. K. Al-Muhanna, S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, “Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams,” Journal of Optics, vol. 13, no. 10, Article ID 105703, 2011.
[30]  T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” Journal of Microscopy, vol. 210, no. 3, pp. 319–323, 2003.
[31]  H. Kano, D. Nomura, and H. Shibuya, “Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam,” Applied Optics, vol. 43, no. 12, pp. 2409–2411, 2004.
[32]  K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Optics Letters, vol. 34, no. 7, pp. 971–973, 2009.
[33]  C. J. Zapata-Rodriguez, S. Vukovi?, M. R. Beli?, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Optics Express, vol. 19, pp. 19572–19581, 2011.
[34]  M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 1999.
[35]  G. N. Watson, A Threatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1966.
[36]  G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, Academic Press, Orlando, Fla, USA, 1985.
[37]  A. Papoulis, Circuits and Systems, Holt, Rinehart and Winston, New York, NY, USA, 1980.
[38]  M. Yamamoto, “Surface plasmon resonance. Theory: tutorial,” Review of Polarography, vol. 48, pp. 209–237, 2002.
[39]  V. N. Belyi, N. A. Khilo, N. S. Kazak, A. A. Ryzhevich, and A. Forbes, “Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial crystals,” Optical Engineering, vol. 50, Article ID 059001, 9 pages, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413