全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cationic Bioactive Peptide from the Seeds of Benincasa hispida

DOI: 10.1155/2014/156060

Full-Text   Cite this paper   Add to My Lib

Abstract:

A designated bioactive peptide “Hispidalin” purified from the seeds of Benincasa hispida, which is a medicinal plant, belongs to Cucurbitaceae family. Purification was achieved by using a procedure consisting of extraction from potassium phosphate buffer followed by FPLC and HPLC steps. Based on amino acid residue, this peptide is amphipathic and basic with one net positive charge having isoelectric pH 8.1. This peptide is without sulphur containing amino acid suggesting its extended conformation lacking double bond secondary structure. The results obtained from MALDI-TOF suggested that Hispidalin is of molecular mass 5.7?KDa with 49 amino acid residues and confirmed SDS-PAGE resolved ~6.0?KDa protein band. This novel and unknown peptide “Hispidalin” showed broad and potent inhibitory effects against various human bacterial and fungal pathogens; its growth inhibition was significantly comparable with commercial antibacterial and antifungal drugs. The Hispidalin at 40?μg/mL concentration exhibited 70.8% DPPH free radical-scavenging activity and 69.5% lipid peroxide inhibition. Thus, in the present study, Hispidalin demonstrated remarkable antimicrobial and antioxidant potentials from the seeds of B. hispida. 1. Introduction Plants are one of the major sources of peptide. Potentially, peptides have considerable medical importance since they [1] affect the stability and sensory quality of plant foods [2]. Research on bioactive proteins/peptide has been increasing including work on the development of pathogen resistant and antimicrobial compounds [2–6]. In recent years, extensive scientific evidence has been provided for the existence of biological active peptides and proteins derived from plants that might have beneficial effects upon human health [6–12]. Peptides have certain biological activities like antimicrobial and antioxidant activities [2, 4, 6, 13]. Several plants in the family Cucurbitaceae have been widely used as medicine in many countries of Asia including India. B. hispida commonly known as wax guard has been used in treatment of gastrointestinal problems [14], antidepressant-like activity [15], antinociceptive, antipyretic [16], anticompulsive effects [17], and antimicrobial activity [18]. Plants are rich in a wide variety of protein that has found antimicrobial properties [1, 2, 6, 11, 19]. Plants do not have an immune system directly comparable with that of animals. Thus, to protect themselves from infection by a variety of pathogens, plants have evolved a host of defense mechanisms [2, 4, 12, 19]. In recent decades, a number of

References

[1]  B. Hernandez-Ledesma, C. C. Hsieh, and B. O. de Lumen, “Chemopreventive properties of peptide lunasin: a review,” Protein and Peptide Letters, vol. 20, pp. 424–432, 2005.
[2]  E. de Souza Candido, M. H. E. S. Cardoso, D. A. Sousa et al., “The use of versatile plant antimicrobial peptides in agribusiness and human health,” Peptides, vol. 55, pp. 65–78, 2014.
[3]  C. Avitabile, R. Capparelli, M. M. Rigano et al., “Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond,” Journal of Peptide Science, vol. 13, no. 4, pp. 240–245, 2013.
[4]  M. Pushpanathan, P. Gunasekaran, and J. Rajendhran, “Antimicrobial peptides: versatile biological properties,” International Jounral of Peptides, vol. 2013, Article ID 675391, 15 pages, 2013.
[5]  A. A. Slavokhotova, E. A. Rogozhin, A. K. Musolyamov et al., “Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution,” Plant Molecular Biology, vol. 84, no. 1-2, pp. 189–202, 2014.
[6]  J. R. Soares, A. de Oliveira Carvalho, I. S. dos Santos et al., “Antimicrobial peptides from Adenanthera pavonina L. seeds: characterization and antifungal activity,” Protein and Peptide Letters, vol. 19, no. 5, pp. 520–529, 2012.
[7]  G. B. Dias, V. M. Gomes, U. Z. Pereira et al., “Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. seeds,” The Protein Journal, vol. 32, no. 1, pp. 15–26, 2013.
[8]  M. L. Gee, M. Burton, A. Grevis-James et al., “Imaging the action of antimicrobial peptides on living bacterial cells,” Scientific Reports, vol. 3, article 1557, 2013.
[9]  A. T. Girgih, C. C. Udenigwe, and R. E. Aluko, “Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity,” Plant Foods for Human Nutrition, vol. 68, no. 1, pp. 39–46, 2013.
[10]  Y. N. Tan, M. K. Ayob, and W. A. W. Yaacob, “Purification and characterisation of antibacterial peptide-containing compound derived from palm kernel cake,” Food Chemistry, vol. 136, no. 1, pp. 279–284, 2013.
[11]  U. Zottich, M. Da Cunha, A. O. Carvalho et al., “An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi,” Biochimica et Biophysica Acta—General Subjects, vol. 1830, no. 6, pp. 3509–3516, 2013.
[12]  M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, no. 6870, pp. 389–395, 2002.
[13]  O. L. Franco, “Peptide promiscuity: an evolutionary concept for plant defense,” FEBS Letters, vol. 585, no. 7, pp. 995–1000, 2011.
[14]  M. A. Rachchh and S. M. Jain, “Gastroprotective effect of Benincasa hispida fruit extract,” Indian Journal of Pharmacology, vol. 40, no. 6, pp. 271–275, 2008.
[15]  D. Dhingra and P. Joshi, “Antidepressant-like activity of Benincasa hispida fruits in mice: possible involvement of monoaminergic and GABAergic systems,” Journal of Pharmacology and Pharmacotherapeutics, vol. 3, pp. 60–62, 2012.
[16]  Z. L. Qadrie, N. T. Hawisa, M. W. A. Khan, M. Samuel, and R. Anandan, “Antinociceptive and anti-pyretic activity of Benincasa hispida (Thunb.) Cogn. in Wistar albino rats,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 3, pp. 287–290, 2009.
[17]  S. Girdhar, M. M. Wanjari, S. K. Prajapati, and A. Girdhar, “Evaluation of anti-compulsive effect of methanolic extract of Benincasa hispida Cogn. fruit in mice,” Acta Poloniae Pharmaceutica—Drug Research, vol. 67, no. 4, pp. 417–421, 2010.
[18]  D. Natarajan, R. J. Lavarasan, S. C. Babu, M. A. Refai, and L. H. Ansari, “Antimicrobial studies on methanol extract of Benincasa hispida cogn., fruit,” Ancient Science of Life, vol. 22, no. 3, pp. 98–100, 2003.
[19]  T. Nakatsuji and R. L. Gallo, “Antimicrobial peptides: old molecules with new ideas,” Journal of Investigative Dermatology, vol. 132, no. 3, pp. 887–895, 2012.
[20]  P. Wang, J. K. Bang, H. J. Kim, J. K. Kim, Y. Kim, and S. Y. Shin, “Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1,” Peptides, vol. 30, no. 12, pp. 2144–2149, 2009.
[21]  L. Padovan, M. Scocchi, and A. Tossi, “Structural aspects of plant antimicrobial peptides,” Current Protein and Peptide Science, vol. 11, no. 3, pp. 210–219, 2010.
[22]  S. J. Harrison, A. M. McManus, J. P. Marcus et al., “Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli,” Protein Expression and Purification, vol. 15, no. 2, pp. 171–177, 1999.
[23]  C. F. Ajibola, J. B. Fashakin, T. N. Fagbemi, and R. E. Aluko, “Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions,” International Journal of Molecular Sciences, vol. 12, no. 10, pp. 6685–6702, 2011.
[24]  J. Carrasco-Castilla, A. J. Hernandez-Alvarez, C. Jimenez-Martinez et al., “Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates,” Food Chemistry, vol. 135, no. 3, pp. 1789–1795, 2012.
[25]  B. Wang, L. Li, C. F. Chi, J. H. Ma, H. Y. Luo, and Y. F. Xu, “Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate,” Food Chemistry, vol. 138, no. 2-3, pp. 1713–1719, 2013.
[26]  D. M. Marrufo-Estrada, M. R. Segura-Campos, L. A. Chel-Guerrero, and D. A. Betancur-Ancona, “Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolysates with biological activity,” Food Chemistry, vol. 138, no. 1, pp. 77–83, 2013.
[27]  H. Schagger, H. Aquila, and G. Von Jagow, “Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoreis for direct visualization of polypeptides during electrophoresis,” Analytical Biochemistry, vol. 173, no. 1, pp. 201–205, 1988.
[28]  I. A. Holder and S. T. Boyce, “Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture,” Burns, vol. 20, no. 5, pp. 426–429, 1994.
[29]  W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995.
[30]  T. Osawa and M. Namiki, “A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves,” Agricultural and Biological Chemistry, vol. 45, no. 3, pp. 735–740, 1981.
[31]  C. Stephens, K. Kazan, K. C. Goulter, D. J. Maclean, and J. M. Manners, “The mode of action of the plant antimicrobial peptide MiAMP1 differs from that of its structural homologue, the yeast killer toxin WmKT,” FEMS Microbiology Letters, vol. 243, no. 1, pp. 205–210, 2005.
[32]  S. S. Verma, W. R. Yajima, M. H. Rahman et al., “A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus),” Plant Molecular Biology, vol. 79, no. 1-2, pp. 61–74, 2012.
[33]  H. X. Wang and T. B. Ng, “An antifungal peptide from red lentil seeds,” Peptides, vol. 28, no. 3, pp. 547–552, 2007.
[34]  Y. Li, Y. Liu, Z. Zhou et al., “Complete genome sequence of Aeromonas veronii strain B565,” Journal of Bacteriology, vol. 193, no. 13, pp. 3389–3390, 2011.
[35]  I. Mora, J. Cabrefiga, and E. Montesinos, “Antimicrobial peptide genes in Bacillus strains from plant environments,” International Microbiology, vol. 14, no. 4, pp. 213–223, 2011.
[36]  P. Dey, K. R. Maulik, M. M. Santi, and M. K. Mrinal, “Identification of an extracellular antifungal protein from the endophytic fungus Colletotrichum sp. DM06,” Protein and Peptide Letters, vol. 20, no. 2, pp. 173–179, 2013.
[37]  P. B. Pelegrini, L. R. Farias, A. C. M. Saude et al., “A novel antimicrobial peptide from crotalaria pallida seeds with activity against human and phytopathogens,” Current Microbiology, vol. 59, no. 4, pp. 400–404, 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133