全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein

DOI: 10.1155/2013/390230

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin. 1. Introduction The innate immune system or the nonspecific immune system is the first and the oldest line of defense in organisms [1, 2]. It was the most dominant form of immunity before the evolution of the more sophisticated adaptive immunity. It is comprised of various mechanisms which are responsible for rapid defense of the host organism against invasion by other factors in a nonspecific manner. The innate immune system differs from the adaptive immune system in a way that while it is able to defend the body against pathogens, it is not able to impart long-lasting immunity to the host, unlike the latter [3]. Despite the evolution of the more complex and specific adaptive immunity, innate immunity still continues to function as the primary line of defense for most organisms [4]. The antimicrobial action in the innate immunity is mediated by various antimicrobial proteins and peptides, which have been evolutionary conserved. Antimicrobial peptides are small peptides which demonstrate broad-spectrum antibiotic activity against various gram-positive and gram-negative bacteria, fungi, protozoa, and viruses [5–8]. While the most common mechanism of action deployed by these peptides is perturbation of microbial cell membrane [9–11], there are other mechanisms which are also prevalent [12–16]. Due to increasing resistance to antibiotics, there is an urgent requirement of novel antimicrobial drugs [17–19]. Use of antimicrobial peptides is one of the promising approaches which may lead to potential antimicrobial drugs [16, 20–24]. It has been observed that peptides which are predominantly cationic and hydrophobic in nature show potent antimicrobial activity [5, 25–29]. Many of these peptides including indolicidin from bovine

References

[1]  J. A. Hoffmann and J. M. Reichhart, “Drosophila innate immunity: an evolutionary perspective,” Nature Immunology, vol. 3, no. 2, pp. 121–126, 2002.
[2]  H. Kaufmann, R. Medzhitov, and S. Gordon, The Innate Immune Response to Infection, ASM Press, Washington, DC, USA, 2004.
[3]  A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010.
[4]  B. Beutle, “Innate immunity: an overview,” Molecular Immunology, vol. 40, no. 12, pp. 845–859, 2004.
[5]  R. E. W. Hancock and A. Patrzykat, “Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics,” Current Drug Targets, vol. 2, no. 1, pp. 79–83, 2002.
[6]  K. A. Brogden, M. Ackermann, P. B. McCray Jr., and B. F. Tack, “Antimicrobial peptides in animals and their role in host defences,” International Journal of Antimicrobial Agents, vol. 22, no. 5, pp. 465–478, 2003.
[7]  M. Pasupuleti, A. Schmidtchen, and M. Malmsten, “Antimicrobial peptides: key components of the innate immune system,” Critical Reviews in Biotechnology, vol. 32, no. 2, pp. 143–171, 2012.
[8]  M. Maes, A. Loyter, and A. Friedler, “Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions,” FEBS Journal, vol. 279, no. 16, pp. 2795–2809, 2012.
[9]  W. van't Hof, E. C. Veerman, E. J. Helmerhorst, and A. V. Amerongen, “Antimicrobial peptides: properties and applicability,” Biological Chemistry, vol. 382, no. 4, pp. 597–619, 2001.
[10]  Y. Shai, “Mode of action of membrane active antimicrobial peptides,” Biopolymers, vol. 66, no. 4, pp. 236–248, 2002.
[11]  S. L. Sand, J. Nissen-Meyer, O. Sand, T. M. Haug, and A. Plantaricin, “A cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins,” Biochimica et Biophysica Acta, vol. 1828, no. 2, pp. 249–259, 2012.
[12]  M. E. Qui?ones-Mateu, M. M. Lederman, Z. Feng, et al., “Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication,” AIDS, vol. 17, no. 16, pp. 39–48, 2003.
[13]  S. Sinha, N. Cheshenko, R. I. Lehrer, and B. C. Herold, “NP-1, a rabbit α-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 2, pp. 494–500, 2003.
[14]  W. Wang, S. M. Owen, D. L. Rudolph, et al., “Activity of alpha- and theta-defensins against primary isolates of HIV-1,” Journal of Immunology, vol. 173, no. 1, pp. 515–520, 2004.
[15]  B. Yasin, W. Wang, M. Pang, et al., “Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry,” Journal of Virology, vol. 78, no. 10, pp. 5147–5156, 2004.
[16]  Y. J. Gordon, E. G. Romanowski, and A. M. McDermott, “A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs,” Current Eye Research, vol. 30, no. 7, pp. 505–515, 2005.
[17]  J. Davies, “Inactivation of antibiotics and the dissemination of resistance genes,” Science, vol. 264, no. 5157, pp. 375–382, 1994.
[18]  J. Verhoef, “Antibiotic resistance: the pandemic,” Advances in Experimental Medicine and Biology, vol. 531, pp. 301–313, 2003.
[19]  K. M. Shea, “Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children’s health,” Pediatrics, vol. 112, no. 1, pp. 253–258, 2003.
[20]  M. Zasloff, “Innate immunity, antimicrobial peptides, and protection of the oral cavity,” The Lancet, vol. 360, no. 9340, pp. 1116–1117, 2002.
[21]  A. R. Koczulla and R. Bals, “Antimicrobial peptides: current status and therapeutic potential,” Drugs, vol. 63, no. 4, pp. 389–406, 2003.
[22]  M. Zasloff, “Antimicrobial peptides, innate immunity, and the normally sterile urinary tract,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2810–2816, 2007.
[23]  D. Yang, A. Biragyn, D. M. Hoover, J. Lubkowski, and J. J. Oppenheim, “Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense,” Annual Review of Immunology, vol. 22, pp. 181–215, 2004.
[24]  R. Capparelli, F. De Chiara, N. Nocerino, et al., “New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model,” BMC Immunology, vol. 13, article 61, 2012.
[25]  R. E. Hancock, “The therapeutic potential of cationic peptides,” Expert Opinion on Investigational Drugs, vol. 7, no. 2, pp. 167–174, 1998.
[26]  R. E. Hancock, “Cationic antimicrobial peptides: towards clinical applications,” Expert Opinion on Investigational Drugs, vol. 9, no. 8, pp. 1723–1729, 2000.
[27]  M. G. Scott, H. Yan, and R. E. W. Hancock, “Biological properties of structurally related α-helical cationic antimicrobial peptides,” Infection and Immunity, vol. 67, no. 4, pp. 2005–2009, 1999.
[28]  M. G. Scott and R. E. Hancock, “Cationic antimicrobial peptides and their multifunctional role in the immune system,” Critical Reviews in Immunology, vol. 20, no. 5, pp. 407–431, 2000.
[29]  K. Y. Choi, L. N. Chow, and N. Mookherjee, “Cationic host defence peptides: multifaceted role in immune modulation and inflammation,” Journal of Innate Immunity, vol. 4, no. 4, pp. 361–370, 2012.
[30]  M. E. Selsted, M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor, “Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils,” The Journal of Biological Chemistry, vol. 267, no. 7, pp. 4292–4295, 1992.
[31]  C. Lawyer, S. Pai, M. Watabe et al., “Antimicrobial activity of a 13 ammo acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides,” FEBS Letters, vol. 390, no. 1, pp. 95–98, 1996.
[32]  J. E. Blochet, C. Chevalier, E. Forest et al., “Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton x-114 phase partitioning,” FEBS Letters, vol. 329, no. 3, pp. 336–340, 1993.
[33]  S. E. Blondelle, E. Takahashi, K. T. Dinh, and R. A. Houghten, “The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries,” Journal of Applied Bacteriology, vol. 78, no. 1, pp. 39–46, 1995.
[34]  A. Pellegrini, U. Thomas, N. Bramaz, S. Klauser, P. Hunziker, and R. Von Fellenberg, “Identification and isolation of a bactericidal domain chicken egg white lysozyme,” Journal of Applied Microbiology, vol. 82, no. 3, pp. 372–378, 1997.
[35]  P. Bulet, R. St?cklin, and L. Menin, “Anti-microbial peptides: from invertebrates to vertebrates,” Immunological Reviews, vol. 198, pp. 169–184, 2004.
[36]  A. Giangaspero, L. Sandri, and A. Tossi, “Amphipathic alpha helical antimicrobial peptides,” European Journal of Biochemistry, vol. 268, no. 3, pp. 5589–5600, 2001.
[37]  A. Tossi, L. Sandri, and A. Giangaspero, “Amphipathic, alpha-helical antimicrobial peptides,” Biopolymers, vol. 55, no. 1, pp. 4–30, 2000.
[38]  J. He, R. Eckert, T. Pharm, et al., “Novel synthetic antimicrobial peptides against Streptococcus mutants,” Antimicrobial Agents of Chemotherapy, vol. 51, no. 4, pp. 1351–1358, 2007.
[39]  P. L. Masson and J. F. Heremans, “Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction,” European Journal of Biochemistry, vol. 6, no. 4, pp. 579–584, 1968.
[40]  P. L. Masson, J. F. Heremans, and J. Ferin, “Presence of an Iron-binding protein (lactoferrin) in the genital tract of the human female. I. Its immunohistochemical localization in the endometrium,” Fertility and Sterility, vol. 19, no. 5, pp. 679–689, 1968.
[41]  P. L. Masson, J. F. Heremans, and E. Schonne, “Lactoferrin, an iron-binding protein in neutrophilic leukocytes,” The Journal of Experimental Medicine, vol. 130, no. 3, pp. 643–658, 1969.
[42]  P. Masson, J. F. Heremans, and J. Prignot, “Immunohistochemical localization of the iron-binding protein lactoferrin in human bronchial glands,” Experientia, vol. 21, no. 10, pp. 604–605, 1965.
[43]  L. H. Vorland, “Lactoferrin: a multifunctional glycoprotein,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 107, no. 11, pp. 971–981, 1999.
[44]  R. Chierici, “Antimicrobial actions of lactoferrin,” Advances in Nutrition Research, vol. 10, pp. 247–269, 2001.
[45]  P. Valenti, M. Marchetti, F. Superti, et al., “Antiviral activity of lactoferrin,” Advances in Experimental Medicine and Biology, vol. 443, pp. 199–203, 1998.
[46]  H. Nikawa, L. P. Samaranayake, J. Tenovuo, K. M. Pang, and T. Hamada, “The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei,” Archives of Oral Biology, vol. 38, no. 12, pp. 1057–1063, 1993.
[47]  C. C. Yen, C. J. Shen, W. H. Hsu, et al., “Lactoferrin: an iron-binding antimicrobial protein against Escherichia coli infection,” Biometals, vol. 24, no. 4, pp. 585–594, 2011.
[48]  S. Farnaud and R. W. Evans, “Lactoferrin—a multifunctional protein with antimicrobial properties,” Molecular Immunology, vol. 40, no. 7, pp. 395–405, 2003.
[49]  A. M. Cole, H. I. Liao, O. Stuchlik, et al., “Cationic polypeptides are required for antibacterial activity of human airway fluid,” Journal of Immunology, vol. 169, no. 12, pp. 6985–6991, 2002.
[50]  B. E. Haug, M. L. Skar, and J. S. Svendsen, “Bulky aromatic amino acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives,” Journal of Peptide Science, vol. 7, no. 8, pp. 425–432, 2001.
[51]  M. B. Str?m, O. Rekdal, and J. S. Svendsen, “Antibacterial activity of 15-residue lactoferricin derivatives,” The Journal of Peptide Research, vol. 56, no. 5, pp. 265–274, 2000.
[52]  A. R. Lizzi, V. Carnicelli, M. M. Clarkson, A. Di Giulio, and A. Oratore, “Lactoferrin derived peptides: mechanisms of action and their perspectives as antimicrobial and antitumoral agents,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 6, pp. 687–695, 2009.
[53]  M. Tomita, M. Takase, W. Bellamy, and S. Shimakura, “A review: the active peptide of lactoferrin,” Acta Paediatrica Japonica, vol. 36, no. 5, pp. 585–591, 1994.
[54]  J. L. Gifford, H. N. Hunter, and H. J. Vogel, “Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2588–2598, 2005.
[55]  M. Tomita, H. Wakabayashi, K. Shin, K. Yamauchi, T. Yaeshima, and K. Iwatsuki, “Twenty-five years of research on bovine lactoferrin applications,” Biochimie, vol. 91, no. 1, pp. 52–57, 2009.
[56]  N. Orsi, “The antimicrobial activity of lactoferrin: current status and perspectives,” BioMetals, vol. 17, no. 3, pp. 189–196, 2004.
[57]  H. M. Baker and E. N. Baker, “Lactoferrin and iron: structural and dynamic aspects of binding and release,” Biometals, vol. 17, no. 3, pp. 209–216, 2004.
[58]  P. P. Ward and O. M. Conneely, “Lactoferrin: role in iron homeostasis and host defense against microbial infection,” Biometals, vol. 17, no. 3, pp. 203–208, 2004.
[59]  H. Jenssen and R. E. W. Hancock, “Antimicrobial properties of lactoferrin,” Biochimie, vol. 91, no. 1, pp. 19–29, 2009.
[60]  O. Aguilera, H. Ostolaza, L. M. Quirós, and J. F. Fierro, “Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes,” FEBS Letters, vol. 462, no. 3, pp. 273–277, 1999.
[61]  S. Sánchez-Gómez, M. Lamata, J. Leiva, et al., “Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides,” BMC Microbiology, vol. 8, article 196, 2008.
[62]  S. Farnaud, C. Spiller, L. C. Moriarty et al., “Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity,” FEMS Microbiology Letters, vol. 233, no. 2, pp. 193–199, 2004.
[63]  Y. Shai, “Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 55–70, 1999.
[64]  H. J. Vogel, D. J. Schibli, W. Jing, E. M. Lohmeier-Vogel, R. F. Epand, and R. M. Epand, “Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides,” Biochemistry and Cell Biology, vol. 80, no. 1, pp. 49–63, 2002.
[65]  L. Dijkshoorn, C. P. J. M. Brouwer, S. J. P. Bogaards, A. Nemec, P. J. Van Den Broek, and P. H. Nibbering, “The synthetic n-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 12, pp. 4919–4921, 2004.
[66]  H. P. Stallmann, C. Faber, A. L. Bronckers, et al., “Histatin and lactoferrin derived peptides: antimicrobial properties and effects on mammalian cells,” Peptides, vol. 26, no. 12, pp. 2355–2359, 2005.
[67]  A. Lupetti, A. Paulusma-Annema, M. M. Welling et al., “Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 262–267, 2003.
[68]  A. Lupetti, C. P. J. M. Brouwer, S. J. P. Bogaards et al., “Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection,” Journal of Infectious Diseases, vol. 196, no. 9, pp. 1416–1424, 2007.
[69]  A. Lupetti, A. Paulusma-Annema, M. M. Welling, S. Senesi, J. T. Van Dissel, and P. H. Nibbering, “Candidacidal activities of human lactoferrin peptides derived from the N terminus,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 12, pp. 3257–3263, 2000.
[70]  P. H. Nibbering, E. Ravensbergen, M. M. Welling et al., “Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria,” Infection and Immunity, vol. 69, no. 3, pp. 1469–1476, 2001.
[71]  P. H. C. Van Berkel, M. E. J. Geerts, H. A. van Veen, M. Mericskay, H. A. De Boer, and J. H. Nuijens, “N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA,” Biochemical Journal, vol. 328, no. 1, pp. 145–151, 1997.
[72]  H. P. Stallmann, C. Faber, A. L. J. J. Bronckers, A. V. Nieuw Amerongen, and P. I. J. M. Wuismann, “Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11- or gentamicin-containing calcium phosphate cement,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 2, pp. 472–476, 2004.
[73]  A. Lupetti, C. P. J. M. Brouwer, H. E. C. Dogterom-Ballering et al., “Release of calcium from intracellular stores and subsequent uptake by mitochondria are essential for the candidacidal activity of an N-terminal peptide of human lactoferrin,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 3, pp. 603–608, 2004.
[74]  A. M. van der Does, S. J. P. Bogaards, B. Ravensbergen, H. Beekhuizen, J. T. Van Dissel, and P. H. Nibbering, “Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 2, pp. 811–816, 2010.
[75]  A. M. van der Does, P. J. Hensbergen, S. J. Bogaards, et al., “The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity,” Journal of Immunology, vol. 188, no. 10, pp. 5012–5019, 2012.
[76]  M. I. A. van der Kraan, J. Groenink, K. Nazmi, E. C. I. Veerman, J. G. M. Bolscher, and A. V. Nieuw Amerongen, “Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin,” Peptides, vol. 25, no. 2, pp. 177–183, 2004.
[77]  M. I. A. van der Kraan, K. Nazmi, A. Teeken et al., “Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part,” Biological Chemistry, vol. 386, no. 2, pp. 137–142, 2005.
[78]  E. F. Haney, F. Lau, and H. J. Vogel, “Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin,” Biochimica et Biophysica Acta, vol. 1768, no. 10, pp. 2355–2364, 2007.
[79]  M. I. A. van der Kraan, C. van der Made, K. Nazmi et al., “Effect of amino acid substitutions on the candidacidal activity of LFampin 265-284,” Peptides, vol. 26, no. 11, pp. 2093–2097, 2005.
[80]  M. I. A. van der Kraan, K. Nazmi, W. van't Hof, A. V. Nieuw Amerongen, E. C. I. Veerman, and J. G. M. Bolscher, “Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268-284 and LFampin 265-284: Asp-Leu-Ile makes a difference,” Biochemistry and Cell Biology, vol. 84, no. 3, pp. 358–362, 2006.
[81]  M. I. A. van der Kraan, J. van Marle, K. Nazmi et al., “Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli,” Peptides, vol. 26, no. 9, pp. 1537–1542, 2005.
[82]  H. FloresVillase?or, A. CanizalezRomán, M. ReyesLopez, et al., “Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli,” Biometals, vol. 23, no. 3, pp. 569–578, 2010.
[83]  E. F. Haney, H. N. Hunter, K. Matsuzaki, and H. J. Vogel, “Solution NMR studies of amphibian antimicrobial peptides: linking structure to function?” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1639–1655, 2009.
[84]  E. F. Haney, S. Nathoo, H. J. Vogel, and E. J. Prenner, “Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action,” Chemistry and Physics of Lipids, vol. 163, no. 1, pp. 82–93, 2010.
[85]  A. Tsutsumi, N. Javkhlantugs, A. Kira, et al., “Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation,” Biophysical Journal, vol. 103, no. 8, pp. 1735–1743, 2012.
[86]  E. F. Haney, K. Nazmi, J. G. Bolscher, and H. J. Vogel, “Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin,” Biochimica et Biophysica Acta, vol. 1818, no. 3, pp. 762–775, 2012.
[87]  M. Schiffer, C. H. Chang, and F. J. Stevens, “The functions of tryptophan residues in membrane proteins,” Protein Engineering, vol. 5, no. 3, pp. 213–214, 1992.
[88]  W. Bellamy, M. Takase, H. Wakabayashi, K. Kawase, and M. Tomita, “Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin,” Journal of Applied Bacteriology, vol. 73, no. 6, pp. 472–479, 1992.
[89]  W. Bellamy, H. Wakabayashi, M. Takase, K. Kawase, S. Shimamura, and M. Tomita, “Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin,” Medical Microbiology and Immunology, vol. 182, no. 2, pp. 97–105, 1993.
[90]  K. Yamauchi, M. Tomita, T. J. Giehl, and R. T. Ellison, “Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment,” Infection and Immunity, vol. 61, no. 2, pp. 719–728, 1993.
[91]  J. H. Kang, M. K. Lee, K. L. Kim, and K. S. Hahm, “Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin,” International Journal of Peptide and Protein Research, vol. 48, no. 4, pp. 357–363, 1996.
[92]  H. Wakabayashi, S. Abe, S. Teraguchi, H. Hayasawa, and H. Yamaguchi, “Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 7, pp. 1587–1591, 1998.
[93]  H. Wakabayashi, T. Okutomi, S. Abe, H. Hayasawa, M. Tomita, and H. Yamaguchi, “Enhanced anti-Candida activity of neutrophils and azole antifungal agents in the presence of lactoferrin-related compounds,” Advances in Experimental Medicine and Biology, vol. 443, pp. 229–237, 1998.
[94]  H. Jenssen, “Anti herpes simplex virus activity of lactoferrin/lactoferricin—an example of antiviral activity of antimicrobial protein/peptide,” Cellular and Molecular Life Sciences, vol. 62, no. 24, pp. 3002–3013, 2005.
[95]  M. Ikeda, A. Nozaki, K. Sugiyama et al., “Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells,” Virus Research, vol. 66, no. 1, pp. 51–63, 2000.
[96]  Y. Omata, M. Satake, R. Maeda et al., “Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin,” The Journal of Veterinary Medical Science, vol. 63, no. 2, pp. 187–190, 2001.
[97]  Y. C. Yoo, S. Watanabe, R. Watanabe, K. Hata, K. I. Shimazaki, and I. Azuma, “Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice,” Japanese Journal of Cancer Research, vol. 88, no. 2, pp. 184–190, 1997.
[98]  Y. C. Yoo, R. Watanabe, Y. Koike et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: involvement of reactive oxygen species,” Biochemical and Biophysical Research Communications, vol. 237, no. 3, pp. 624–628, 1997.
[99]  D. S. Chapple, D. J. Mason, C. L. Joannou, E. W. Odell, V. Gant, and R. W. Evans, “Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111,” Infection and Immunity, vol. 66, no. 6, pp. 2434–2440, 1998.
[100]  H. Kuwata, T. T. Yip, M. Tomita, and T. W. Hutchens, “Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin,” Biochimica et Biophysica Acta, vol. 1429, no. 1, pp. 129–141, 1998.
[101]  L. H. Vorland, H. Ulvatne, J. Andersen et al., “Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin,” Scandinavian Journal of Infectious Diseases, vol. 30, no. 5, pp. 513–517, 1998.
[102]  K. Shin, K. Yamauchi, S. Teraguchi et al., “Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7,” Letters in Applied Microbiology, vol. 26, no. 6, pp. 407–411, 1998.
[103]  E. M. Jones, A. Smart, G. Bloomberg, et al., “Lactoferricin, a new antimicrobial peptide,” Journal of Applied Bacteriology, vol. 77, no. 2, pp. 208–214, 1994.
[104]  M. Tomita, M. Takase, H. Wakabayashi, and W. Bellamy, “Antimicrobial peptides of lactoferrin,” Advances in Experimental Medicine and Biology, vol. 357, pp. 209–218, 1994.
[105]  E. Mazoyer, S. Lévy-Toledano, F. Rendu et al., “KRDS, a new peptide derived from human lactotransferrin, inhibits platelet aggregation and release reaction,” European Journal of Biochemistry, vol. 194, no. 1, pp. 43–49, 1990.
[106]  G. Wu, C. Ruan, L. Drouet, and J. Caen, “Inhibition effects of KRDS, a peptide derived from lactotransferrin, on platelet function and arterial thrombus formation in dogs,” Haemostasis, vol. 22, no. 1, pp. 1–6, 1992.
[107]  O. Aguilera, H. Ostolaza, L. M. Quirós, and J. F. Fierro, “Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes,” FEBS Letters, vol. 462, no. 3, pp. 273–277, 1999.
[108]  H. Ulvatne, ?. Samuelsen, H. H. Haukland, M. Kr?mer, and L. H. Vorland, “Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis,” FEMS Microbiology Letters, vol. 237, no. 2, pp. 377–384, 2004.
[109]  ?. Samuelsen, H. H. Haukland, H. Ulvatne, and L. H. Vorland, “Anti-complement effects of lactoferrin-derived peptides,” FEMS Immunology and Medical Microbiology, vol. 41, no. 2, pp. 141–148, 2004.
[110]  B. E. Haug and J. S. Svendsen, “The role of tryptophan in the antibacterial activity of a 15-residue bovine lactoferricin peptide,” Journal of Peptide Science, vol. 7, no. 4, pp. 190–196, 2001.
[111]  P. M. Hwang, N. Zhou, X. Shan, et al., “Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin,” Biochemistry, vol. 37, no. 12, pp. 4288–4298, 1998.
[112]  H. N. Hunter, A. R. Demcoe, H. Jenssen, T. J. Gutteberg, and H. J. Vogel, “Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 8, pp. 3387–3395, 2005.
[113]  D. L. Rosenstreich and S. N. Vogel, “Central role of macrophages in the host response to endotoxin,” in Microbiology, D. Schlessinger, Ed., pp. 11–15, American Society for Microbiology, Washington, DC, USA, 1980.
[114]  D. C. Morrison and J. L. Ryan, “Endotoxins and disease mechanisms,” Annual Review of Medicine, vol. 38, pp. 417–432, 1987.
[115]  K. Miyazawa, C. Mantel, L. Lu, D. C. Morrison, and H. E. Broxmeyer, “Lactoferrin-lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells,” Journal of Immunology, vol. 146, no. 2, pp. 723–729, 1991.
[116]  B. J. Appelmelk, Y. Q. An, M. Geerts, et al., “Lactoferrin is a lipid A-binding protein,” Infection and Immunity, vol. 62, no. 6, pp. 2628–2632, 1994.
[117]  E. Elass-Rochard, A. Roseanu, D. Legrand et al., “Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide,” Biochemical Journal, vol. 312, part 3, pp. 839–845, 1995.
[118]  L. H. Vorland, H. Ulvatne, ?. Rekdal, and J. S. Svendsen, “Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli,” Scandinavian Journal of Infectious Diseases, vol. 31, no. 5, pp. 467–473, 1999.
[119]  I. Mattsby-Baltzer, A. Roseanu, C. Motas, J. Elverfors, I. Engberg, and L. ?. Hanson, “Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells,” Pediatric Research, vol. 40, no. 2, pp. 257–262, 1996.
[120]  S. Farnaud, C. Spiller, L. C. Moriarty et al., “Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity,” FEMS Microbiology Letters, vol. 233, no. 2, pp. 193–199, 2004.
[121]  G. H. Zhang, D. M. Mann, and C. M. Tsai, “Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide,” Infection and Immunity, vol. 67, no. 3, pp. 1353–1358, 1999.
[122]  A. Majerle, J. Kidri?, and R. Jerala, “Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 5, pp. 1159–1165, 2003.
[123]  B. Japelj, P. Pristov?ek, A. Majerle, and R. Jerala, “Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 16955–16961, 2005.
[124]  H. G. Boman, “Peptide antibiotics and their role in innate immunity,” Annual Review of Immunology, vol. 13, pp. 61–92, 1995.
[125]  N. Schmidt, A. Mishra, G. H. Lai, and G. C. Wong, “Arginine-rich cell-penetrating peptides,” FEBS Letters, vol. 584, no. 9, pp. 1806–1813, 2010.
[126]  S. Futaki, T. Suzuki, W. Ohashi et al., “Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery,” The Journal of Biological Chemistry, vol. 276, no. 8, pp. 5836–5840, 2001.
[127]  M. L. Mangoni, N. Grovale, A. Giorgi, G. Mignogna, M. Simmaco, and D. Barra, “Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions,” Peptides, vol. 21, no. 11, pp. 1673–1679, 2000.
[128]  R. Lai, Y. T. Zheng, J. H. Shen et al., “Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima,” Peptides, vol. 23, no. 3, pp. 427–435, 2002.
[129]  J. B. McPhee and R. E. W. Hancock, “Function and therapeutic potential of host defense peptides,” Journal of Peptide Science, vol. 11, no. 11, pp. 677–687, 2005.
[130]  H. H. Haukland, H. Ulvatne, K. Sandvik, and L. H. Vorland, “The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm,” FEBS Letters, vol. 508, no. 3, pp. 389–393, 2001.
[131]  E. W. Odell, R. Sarra, M. Foxworthy, D. S. Chapple, and R. W. Evans, “Antibacterial activity of peptides homologous to a loop region in human lactoferrin,” FEBS Letters, vol. 382, no. 1-2, pp. 175–178, 1996.
[132]  D. I. Chan, E. J. Prenner, and H. J. Vogel, “Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1184–1202, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413