全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Peptide Receptor Targeting in Cancer: The Somatostatin Paradigm

DOI: 10.1155/2013/926295

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1–5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed. 1. Somatostatin and Somatostatin Receptors: An Overview Somatostatin (SST) is a cyclic neuropeptide containing a disulfide bond linking the cysteine residues at positions 3 and 14 (Cys3-Cys14). Native SST has two molecular forms, SST-28 and SST-14, consisting of 28 or 14?a.a., respectively, derived from proteolysis of a larger precursor molecule, pre-pro-SST. SST is ubiquitously expressed in humans, with high concentrations in brain, liver, lungs, pancreas, thyroid, gastrointestinal tract, and adrenal gland mainly acting as an inhibitor of exocrine and endocrine secretions on target organs. For example, SST suppresses GH, prolactin, and TSH production from pituitary gland, insulin, glucagon and exocrine secretions from pancreas, and several gastrointestinal peptides [1]. In the brain, SST acts as neuromodulator, with physiological effects on neuroendocrine, motor, and cognitive functions, and as neurotransmitter, exerting both stimulatory and inhibitory effects [2]. Moreover, the synthesis of many growth factors (insulin-like growth factor 1, IGF-1; epidermal growth factor, EGF; fibroblast growth factor, FGF; vascular-endothelial growth

References

[1]  Y. C. Patel, “Somatostatin and its receptor family,” Frontiers in Neuroendocrinology, vol. 20, no. 3, pp. 157–198, 1999.
[2]  J. Epelbaum, J. L. Guillou, F. Gastambide, D. Hoyer, E. Duron, and C. Viollet, “Somatostatin, Alzheimer's disease and cognition: an old story coming of age?” Progress in Neurobiology, vol. 89, no. 2, pp. 153–161, 2009.
[3]  G. Kharmate, P. S. Rajput, H. L. Watt et al., “Role of somatostatin receptor 1 and 5 on epidermal growth factor receptor mediated signaling,” Biochimica et Biophysica Acta, vol. 1813, no. 6, pp. 1172–1189, 2011.
[4]  U. Kumar, “Cross-talk and modulation of signaling between somatostatin and growth factor receptors,” Endocrine, vol. 40, no. 2, pp. 168–180, 2011.
[5]  T. Florio and G. Schettini, “Multiple intracellular effecters modulate physiological functions of the cloned somatostatin receptors,” Journal of Molecular Endocrinology, vol. 17, no. 2, pp. 89–100, 1996.
[6]  J. Córdoba-Chacón, M. D. Gahete, J. P. Casta?o, R. D. Kineman, and R. M. Luque, “Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice,” American Journal of Physiology, vol. 300, no. 1, pp. E46–E54, 2011.
[7]  M. Durán-Prado, M. D. Gahete, A. J. Martínez-Fuentes et al., “Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 7, pp. 2634–2643, 2009.
[8]  G. Weckbecker, I. Lewis, R. Albert, et al., “Opportunities in somatostatin research: biological, chemical and therapeutic aspects,” Nature Reviews Drug Discovery, vol. 2, no. 12, pp. 999–1017, 2003.
[9]  L. de Lecea, P. Ruiz-Lozano, P. E. Danielson et al., “Cloning, mRNA expression, and chromosomal mapping of mouse and human preprocortistatin,” Genomics, vol. 42, no. 3, pp. 499–506, 1997.
[10]  J. P. Casta?o, E. Ghigo, R. D. Kineman, L. de Lecea, M. M. Malagón, and H. Vaudry, “Somatostatin, cortistatin and their receptors in health and disease. Foreword,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 1–2, 2008.
[11]  L. de Lecea, “Cortistatin—functions in the central nervous system,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 88–95, 2008.
[12]  N. Robas, E. Mead, and M. Fidock, “MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion,” The Journal of Biological Chemistry, vol. 278, no. 45, pp. 44400–44404, 2003.
[13]  S. Siehler, C. Nunn, J. Hannon, D. Feuerbach, and D. Hoyer, “Pharmacological profile of somatostatin and cortistatin receptors,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 26–34, 2008.
[14]  J. Guillermet-Guibert, H. Lahlou, P. Cordelier, C. Bousquet, S. Pyronnet, and C. Susini, “Physiology of somatostatin receptors,” Journal of Endocrinological Investigation, vol. 28, supplement 11, pp. 5–9, 2005.
[15]  T. Florio, S. Thellung, and G. Schettini, “Intracellular transducing mechanisms coupled to brain somatostatin receptors,” Pharmacological Research, vol. 33, no. 6, pp. 297–305, 1996.
[16]  A. Vasilaki, D. Papasava, D. Hoyer, and K. Thermos, “The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat,” Neuropharmacology, vol. 47, no. 4, pp. 612–618, 2004.
[17]  G. Schettini, T. Florio, G. Magri et al., “Somatostatin and SMS 201–995 reverse the impairment of cognitive functions induced by cysteamine depletion of brain somatostatin,” European Journal of Pharmacology, vol. 151, no. 3, pp. 399–407, 1988.
[18]  L. Vecsei and E. Widerlov, “Effects of intracerebroventricularly administered somatostatin on passive avoidance, shuttle-box behaviour and open-field activity in rats,” Neuropeptides, vol. 12, no. 4, pp. 237–242, 1988.
[19]  T. Florio, C. Ventra, A. Postiglione, and G. Schettini, “Age-related alterations of somatostatin gene expression in different rat brain areas,” Brain Research, vol. 557, no. 1-2, pp. 64–68, 1991.
[20]  M. Grimaldi, T. Florio, and G. Schettini, “Somatostatin inhibits interleukin 6 release from rat cortical type I astrocytes via the inhibition of adenylyl cyclase,” Biochemical and Biophysical Research Communications, vol. 235, no. 1, pp. 242–248, 1997.
[21]  E. Pintér, Z. Helyes, and J. Szolcsanyi, “Inhibitory effect of somatostatin on inflammation and nociception,” Pharmacology and Therapeutics, vol. 112, no. 2, pp. 440–456, 2006.
[22]  D. Ferone, P. M. van Hagen, R. Pivonello, A. Colao, S. W. J. Lamberts, and L. J. Hofland, “Physiological and pathophysiological role of somatostatin receptors in the human thymus,” European Journal of Endocrinology, vol. 143, supplement 1, pp. S27–S34, 2000.
[23]  D. Ferone, M. Boschetti, E. Resmini et al., “Neuroendocrine-immune interactions: the role of cortistatin/somatostatin system,” Annals of the New York Academy of Sciences, vol. 1069, pp. 129–144, 2006.
[24]  P. Ameri and D. Ferone, “Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?” Neuroendocrinology, vol. 95, no. 4, pp. 267–276, 2012.
[25]  V. D. Corleto, “Somatostatin and the gastrointestinal tract,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 1, pp. 63–68, 2010.
[26]  A. Ben-Shlomo and S. M. Shlomo, “Pituitary somatostatin receptor signaling,” Trends in Endocrinology and Metabolism, vol. 21, no. 3, pp. 123–133, 2010.
[27]  T. Florio, C. Rim, R. E. Hershberger, M. Loda, and P. J. S. Stork, “The somatostatin receptor SSTR1 is coupled to phosphotyrosine phosphatase activity in CHO-K1 cells,” Molecular Endocrinology, vol. 8, no. 10, pp. 1289–1297, 1994.
[28]  T. Florio, S. Thellung, S. Arena et al., “Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2,” Journal of Physiology Paris, vol. 94, no. 3-4, pp. 239–250, 2000.
[29]  R. E. Hershberger, B. L. Newman, T. Florio et al., “The somatostatin receptors SSTR1 and SSTR2 are coupled to inhibition of adenylyl cyclase in Chinese hamster ovary cells via pertussis toxin-sensitive pathways,” Endocrinology, vol. 134, no. 3, pp. 1277–1285, 1994.
[30]  O. Meucci, E. Landolfi, A. Scorziello et al., “Dopamine and somatostatin inhibition of prolactin secretion from MMQ pituitary cells: role of adenosine triphosphate-sensitive potassium channels,” Endocrinology, vol. 131, no. 4, pp. 1942–1947, 1992.
[31]  G. Schettini, T. Florio, O. Meucci et al., “Somatostatin inhibition of adenylate cyclase activity in different brain areas,” Brain Research, vol. 492, no. 1-2, pp. 65–71, 1989.
[32]  G. Schettini, T. Florio, O. Meucci, E. Landolfi, G. Lombardi, and A. Marino, “Somatostatin inhibition of anterior pituitary adenylate cyclase activity: different sensitivity between male and female rats,” Brain Research, vol. 439, no. 1-2, pp. 322–329, 1988.
[33]  T. Florio, H. Yao, K. D. Carey, T. J. Dillon, and P. J. S. Stork, “Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1),” Molecular Endocrinology, vol. 13, no. 1, pp. 24–37, 1999.
[34]  F. Viana and B. Hille, “Modulation of high voltage-activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons,” The Journal of Neuroscience, vol. 16, no. 19, pp. 6000–6011, 1996.
[35]  H. J. Kreienkamp, H. H. H?nck, and D. Richter, “Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1),” FEBS Letters, vol. 419, no. 1, pp. 92–94, 1997.
[36]  L. Buscail, N. Delesque, J. P. Esteve et al., “Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 6, pp. 2315–2319, 1994.
[37]  L. Buscail, J. P. Estève, N. Saint-Laurent et al., “Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1580–1584, 1995.
[38]  T. Florio, A. Scorziello, M. Fattore et al., “Somatostatin inhibits PC C13 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity: impairment of the somatostatinergic effects by stable expression of eia viral oncogene,” The Journal of Biological Chemistry, vol. 271, no. 11, pp. 6129–6136, 1996.
[39]  S. Seino, “Somatostatin receptor subtype SSTR2 mediates the inhibition of high-voltage-activated calcium channels by somatostatin and its analogue SMS 201–995,” FEBS Letters, vol. 355, no. 2, pp. 117–120, 1994.
[40]  D. B. Reardon, P. Dent, S. L. Wood, T. Kong, and T. W. Sturgill, “Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected Ras-transformed nih 3T3 cells: coexpression with catalytically inactive SHP-2 blocks responsiveness,” Molecular Endocrinology, vol. 11, no. 8, pp. 1062–1069, 1997.
[41]  D. Roosterman, G. Glassmeier, H. Baumeister, H. Scherübl, and W. Meyerhof, “A somatostatin receptor 1 selective ligand inhibits Ca2+ currents in rat insulinoma 1046–38 cells,” FEBS Letters, vol. 425, no. 1, pp. 137–140, 1998.
[42]  R. E. White, A. Schonbrunn, and D. L. Armstrong, “Somatostatin stimulates Ca2+-activated K+ channels through protein dephosphorylation,” Nature, vol. 351, no. 6327, pp. 570–573, 1991.
[43]  H. Yoshitomi, Y. Fujii, M. Miyazaki, N. Nakajima, N. Inagaki, and S. Seino, “Involvement of MAP kinase and c-fos signaling in the inhibition of cell growth by somatostatin,” American Journal of Physiology, vol. 272, no. 5, pp. E769–E774, 1997.
[44]  T. Florio, “Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors,” Frontiers in Bioscience, vol. 13, no. 3, pp. 822–840, 2008.
[45]  L. N. M?ller, C. E. Stidsen, B. Hartmann, and J. J. Holst, “Somatostatin receptors,” Biochimica et Biophysica Acta, vol. 1616, no. 1, pp. 1–84, 2003.
[46]  M. Durán-Prado, M. M. Malagón, F. Gracia-Navarro, and J. P. Casta?o, “Dimerization of G protein-coupled receptors: new avenues for somatostatin receptor signalling, control and functioning,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 63–68, 2008.
[47]  M. Rocheville, D. C. Lange, U. Kumar, R. Sasi, R. C. Patel, and Y. C. Patel, “Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers,” The Journal of Biological Chemistry, vol. 275, no. 11, pp. 7862–7869, 2000.
[48]  A. Baragli, H. Alturaihi, H. L. Watt, A. Abdallah, and U. Kumar, “Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2. Co-immunoprecipitation and fluorescence resonance energy transfer analysis,” Cellular Signalling, vol. 19, no. 11, pp. 2304–2316, 2007.
[49]  M. Rocheville, D. C. Lange, U. Kumar, S. C. Patel, R. C. Patel, and Y. C. Patel, “Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity,” Science, vol. 288, no. 5463, pp. 154–157, 2000.
[50]  M. Grant, H. Alturaihi, P. Jaquet, B. Collier, and U. Kumar, “Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization,” Molecular Endocrinology, vol. 22, no. 10, pp. 2278–2292, 2008.
[51]  M. Grant, R. C. Patel, and U. Kumar, “The role of subtype-specific ligand binding and the C-tail domain in dimer formation of human somatostatin receptors,” The Journal of Biological Chemistry, vol. 279, no. 37, pp. 38636–38643, 2004.
[52]  S. A. War, R. K. Somvanshi, and U. Kumar, “Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal,” Biochimica et Biophysica Acta, vol. 1813, no. 3, pp. 390–402, 2011.
[53]  T. Florio, F. Barbieri, R. Spaziante et al., “Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study,” Endocrine-Related Cancer, vol. 15, no. 2, pp. 583–596, 2008.
[54]  L. J. Hofland, R. A. Feelders, W. W. de Herder, and S. W. J. Lamberts, “Pituitary tumours: the sst/D2 receptors as molecular targets,” Molecular and Cellular Endocrinology, vol. 326, no. 1-2, pp. 89–98, 2010.
[55]  M. Arvigo, F. Gatto, M. Ruscica et al., “Somatostatin and dopamine receptor interaction in prostate and lung cancer cell lines,” Journal of Endocrinology, vol. 207, no. 3, pp. 309–317, 2010.
[56]  H. L. Watt, G. D. Kharmate, and U. Kumar, “Somatostatin receptors 1 and 5 heterodimerize with epidermal growth factor receptor: agonist-dependent modulation of the downstream MAPK signalling pathway in breast cancer cells,” Cellular Signalling, vol. 21, no. 3, pp. 428–439, 2009.
[57]  M. G. Pan, T. Florio, and P. J. S. Stork, “G protein activation of a hormone-stimulated phosphatase in human tumor cells,” Science, vol. 256, no. 5060, pp. 1215–1217, 1992.
[58]  Z. Csaba, S. Peineau, and P. Dournaud, “Molecular mechanisms of somatostatin receptor trafficking,” Journal of Molecular Endocrinology, vol. 48, no. 1, pp. R1–R12, 2012.
[59]  G. Tulipano, R. Stumm, M. Pfeiffer, H. J. Kreienkamp, V. H?llt, and S. Schulz, “Differential β-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes,” The Journal of Biological Chemistry, vol. 279, no. 20, pp. 21374–21382, 2004.
[60]  G. Tulipano and S. Schulz, “Novel insights in somatostatin receptor physiology,” European Journal of Endocrinology, vol. 156, supplement 1, pp. S3–S11, 2007.
[61]  S. Jacobs and S. Schulz, “Intracellular trafficking of somatostatin receptors,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 58–62, 2008.
[62]  J. C. Reubi, B. Waser, R. Cescato, B. Gloor, C. Stettler, and E. Christ, “Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 5, pp. 2343–2350, 2010.
[63]  S. Lesche, D. Lehmann, F. Nagel, H. A. Schmid, and S. Schulz, “Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 2, pp. 654–661, 2009.
[64]  B. Waser, R. Cescato, M. L. Tamma, H. R. Maecke, and J. C. Reubi, “Absence of somatostatin SST2 receptor internalization in vivo after intravenous SOM230 application in the AR42J animal tumor model,” European Journal of Pharmacology, vol. 644, no. 1–3, pp. 257–262, 2010.
[65]  A. Kliewer, A. Mann, A. Petrich, et al., “A transplantable phosphorylation probe for direct assessment of G protein-coupled receptor activation,” PloS ONE, vol. 7, no. 6, Article ID e39458, 2012.
[66]  R. Cozzi and R. Attanasio, “Octreotide long-acting repeatable for acromegaly,” Expert Review of Clinical Pharmacology, vol. 5, no. 2, pp. 125–143, 2012.
[67]  G. Mazziotti and A. Giustina, “Effects of lanreotide SR and Autogel on tumor mass in patients with acromegaly: a systematic review,” Pituitary, vol. 13, no. 1, pp. 60–67, 2010.
[68]  S. P. Rohrer, E. T. Birzin, R. T. Mosley et al., “Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry,” Science, vol. 282, no. 5389, pp. 737–740, 1998.
[69]  F. Barbieri, A. Pattarozzi, M. Gatti et al., “Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-η-dependent inhibition of extracellularly regulated kinase-1/2,” Endocrinology, vol. 149, no. 9, pp. 4736–4746, 2008.
[70]  F. Barbieri, A. Pattarozzi, M. Gatti et al., “Differential efficacy of SSTR1, -2, and -5 agonists in the inhibition of C6 glioma growth in nude mice,” American Journal of Physiology, vol. 297, no. 5, pp. E1078–E1088, 2009.
[71]  D. Cervia, D. Langenegger, E. Schuepbach et al., “Binding and functional properties of the novel somatostatin analogue KE?108 at native mouse somatostatin receptors,” Neuropharmacology, vol. 48, no. 6, pp. 881–893, 2005.
[72]  U. Plockinger, U. Hoffmann, M. Geese, et al., “DG3173 (somatoprim), a unique somatostatin receptor subtypes 2-, 4- and 5-selective analogue, effectively reduces GH secretion in human GH-secreting pituitary adenomas even in octreotide non-responsive tumours,” European Journal of Endocrinology, vol. 166, no. 2, pp. 223–234, 2012.
[73]  H. A. Schmid, “Pasireotide (SOM230): development, mechanism of action and potential applications,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 69–74, 2008.
[74]  A. Ben-Shlomo, H. Schmid, K. Wawrowsky et al., “Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 11, pp. 4342–4350, 2009.
[75]  A. Ben-Shlomo and S. Melmed, “Pasireotide—a somatostatin analog for the potential treatment of acromegaly, neuroendocrine tumors and Cushing's disease,” IDrugs, vol. 10, no. 12, pp. 885–895, 2007.
[76]  A. Colao, S. Petersenn, J. Newell-Price, et al., “A 12-month phase 3 study of pasireotide in Cushing's disease,” The New England Journal of Medicine, vol. 366, no. 10, pp. 914–924, 2012.
[77]  A. Saveanu, G. Gunz, S. Guillen, H. Dufour, M. D. Culler, and P. Jaquet, “Somatostatin and dopamine-somatostatin multiple ligands directed towards somatostatin and dopamine receptors in pituitary adenomas,” Neuroendocrinology, vol. 83, no. 3-4, pp. 258–263, 2006.
[78]  I. Shimon, T. Rubinek, M. Hadani, and N. Alhadef, “PTR-3173 (Somatoprim), a novel somatostatin analog with affinity for somatostatin receptors 2, 4 and 5 is a potent inhibitor of human GH secretion,” Journal of Endocrinological Investigation, vol. 27, no. 8, pp. 721–727, 2004.
[79]  K. Elekes, Z. Helyes, L. Kereskai, et al., “Inhibitory effects of synthetic somatostatin receptor subtype 4 agonists on acute and chronic airway inflammation and hyperreactivity in the mouse,” European Journal of Pharmacology, vol. 578, no. 2-3, pp. 313–322, 2008.
[80]  O. Szokolóczi, R. Schwab, I. Peták, et al., “TT232, a novel signal transduction inhibitory compound in the therapy of cancer and inflammatory diseases,” Journal of Receptors and Signal Transduction, vol. 25, no. 4–6, pp. 217–235, 2005.
[81]  J. Szolcsanyi, K. B?lcskei, A. Szabó et al., “Analgesic effect of TT-232, a heptapeptide somatostatin analogue, in acute pain models of the rat and the mouse and in streptozotocin-induced diabetic mechanical allodynia,” European Journal of Pharmacology, vol. 498, no. 1–3, pp. 103–109, 2004.
[82]  R. Ramón, P. Martín-Gago, X. Verdaguer et al., “SSTR1- and SSTR3-selective somatostatin analogues,” ChemBioChem, vol. 12, no. 4, pp. 625–632, 2011.
[83]  L. Poitout, P. Roubert, M. O. Contour-Galcéra et al., “Identification of potent non-peptide somatostatin antagonists with sst3 selectivity,” Journal of Medicinal Chemistry, vol. 44, no. 18, pp. 2990–3000, 2001.
[84]  F. Gatto and L. J. Hofland, “The role of somatostatin and dopamine D2 receptors in endocrine tumors,” Endocrine-Related Cancer, vol. 18, no. 6, pp. R233–R251, 2011.
[85]  A. Saveanu, E. Lavaque, G. Gunz et al., “Demonstration of enhanced potency of a chimeric somatostatin-dopamine molecule, BIM-23A387, in suppressing growth hormone and prolactin secretion from human pituitary somatotroph adenoma cells,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5545–5552, 2002.
[86]  D. Ferone, M. Arvigo, C. Semino et al., “Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation,” American Journal of Physiology, vol. 289, no. 6, pp. E1044–E1050, 2005.
[87]  M. D. Culler, “Somatostatin-dopamine chimeras: a novel approach to treatment of neuroendocrine tumors,” Hormone and Metabolic Research, vol. 43, no. 12, pp. 854–857, 2011.
[88]  S. W. J. Lamberts, W. H. Bakker, J. C. Reubi, and E. P. Krenning, “Somatostatin-receptor imaging in the localization of endocrine tumors,” The New England Journal of Medicine, vol. 323, no. 18, pp. 1246–1249, 1990.
[89]  I. M. Modlin, S. F. Moss, K. Oberg et al., “Gastrointestinal neuroendocrine (carcinoid) tumours: current diagnosis and management,” Medical Journal of Australia, vol. 193, no. 1, pp. 46–52, 2010.
[90]  D. J. Kwekkeboom, B. L. Kam, M. Van Essen et al., “Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors,” Endocrine-Related Cancer, vol. 17, no. 1, pp. R53–R73, 2010.
[91]  I. Buchmann, M. Henze, S. Engelbrecht et al., “Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 10, pp. 1617–1626, 2007.
[92]  A. Frilling, G. C. Sotiropoulos, J. Li, O. Kornasiewicz, and U. Pl?ckinger, “Multimodal management of neuroendocrine liver metastases,” HPB, vol. 12, no. 6, pp. 361–379, 2010.
[93]  M. de Jong, W. A. P. Breeman, R. Valkema, B. F. Bernard, and E. P. Krenning, “Combination radionuclide therapy using 177Lu and 90Y-labeled somatostatin analogs,” Journal of Nuclear Medicine, vol. 46, no. 1, 2005.
[94]  A. Imhof, P. Brunner, N. Marincek et al., “Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers,” Journal of Clinical Oncology, vol. 29, no. 17, pp. 2416–2423, 2011.
[95]  L. Villard, A. Romer, N. Marincek, et al., “Cohort study of somatostatin-based radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers,” Journal of Clinical Oncology, vol. 30, no. 10, pp. 1100–1106, 2012.
[96]  R. Cescato, S. Schulz, B. Waser et al., “Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists,” Journal of Nuclear Medicine, vol. 47, no. 3, pp. 502–511, 2006.
[97]  M. Ginj, H. Zhang, B. Waser et al., “Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16436–16441, 2006.
[98]  X. Wang, M. Fani, S. Schulz, et al., “Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 12, pp. 1876–1885, 2012.
[99]  M. Fani, L. del Pozzo, K. Abiraj et al., “PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference,” Journal of Nuclear Medicine, vol. 52, no. 7, pp. 1110–1118, 2011.
[100]  D. Wild, M. Fani, M. Behe, et al., “First clinical evidence that imaging with somatostatin receptor antagonists is feasible,” Journal of Nuclear Medicine, vol. 52, no. 9, pp. 1412–1417, 2011.
[101]  M. Schmidt, K. Scheidhauer, C. Luyken et al., “Somatostatin receptor imaging in intracranial tumours,” European Journal of Nuclear Medicine, vol. 25, no. 7, pp. 675–686, 1998.
[102]  G. Pepe, R. Moncayo, E. Bombardieri, et al., “Somatostatin receptor SPECT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, Supplement 1, pp. S41–S51, 2012.
[103]  W. W. de Herder, D. J. Kwekkeboom, R. A. Feelders et al., “Somatostatin receptor imaging for neuroendocrine tumors,” Pituitary, vol. 9, no. 3, pp. 243–248, 2006.
[104]  U. Goglia, D. Ferone, M. Sidoti et al., “Treatment of a pituitary metastasis from a neuroendocrine tumour: case report and literature review,” Pituitary, vol. 11, no. 1, pp. 93–102, 2008.
[105]  S. Baldari, F. Ferrau, C. Alafaci, et al., “First demonstration of the effectiveness of peptide receptor radionuclide therapy (PRRT) with 111In-DTPA-octreotide in a giant PRL-secreting pituitary adenoma resistant to conventional treatment,” Pituitary, vol. 15, Supplement 1, pp. 57–60, 2012.
[106]  V. Ambrosini, M. Fani, S. Fanti, et al., “Radiopeptide imaging and therapy in Europe,” Journal of Nuclear Medicine, vol. 52, Supplement 2, pp. 42S–55S, 2011.
[107]  M. M. Graham and Y. Menda, “Radiopeptide imaging and therapy in the United States,” Journal of Nuclear Medicine, vol. 52, Supplement 2, pp. 56S–63S, 2011.
[108]  L. J. Hofland, “Responsiveness to somatostatin analog treatment and potentials of novel somatostatin analog,” Journal of endocrinological investigation, vol. 26, supplement 8, pp. 8–13, 2003.
[109]  T. Florio, S. Arena, S. Thellung et al., “The activation of the phosphotyrosine phosphatase η (r-PTPη) is responsible for the somatostatin inhibition of PC CI3 thyroid cell proliferation,” Molecular Endocrinology, vol. 15, no. 10, pp. 1838–1852, 2001.
[110]  M. Theodoropoulou, J. Zhang, S. Laupheimer et al., “Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression,” Cancer Research, vol. 66, no. 3, pp. 1576–1582, 2006.
[111]  H. Lahlou, N. Saint-Laurent, J. P. Estève et al., “sst2 somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 39356–39371, 2003.
[112]  P. Pagès, N. Benali, N. Saint-Laurent et al., “sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1,” The Journal of Biological Chemistry, vol. 274, no. 21, pp. 15186–15193, 1999.
[113]  K. Sharma, Y. C. Patel, and C. B. Srikant, “Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3,” Molecular Endocrinology, vol. 10, no. 12, pp. 1688–1696, 1996.
[114]  C. B. Srikant and S. H. Shen, “Octapeptide somatostatin analog SMS 201–995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells,” Endocrinology, vol. 137, no. 8, pp. 3461–3468, 1996.
[115]  S. Arena, A. Pattarozzi, A. Corsaro, G. Schettini, and T. Florio, “Somatostatin receptor subtype-dependent regulation of nitric oxide release: involvement of different intracellular pathways,” Molecular Endocrinology, vol. 19, no. 1, pp. 255–267, 2005.
[116]  V. Cerovac, J. Monteserin-Garcia, H. Rubinfeld et al., “The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells,” Cancer Research, vol. 70, no. 2, pp. 666–674, 2010.
[117]  P. Cordelier, J. P. Estève, S. Najib et al., “Regulation of neuronal nitric-oxide synthase activity by somatostatin analogs following SST5 somatostatin receptor activation,” The Journal of Biological Chemistry, vol. 281, no. 28, pp. 19156–19171, 2006.
[118]  K. Thermos, “Novel signals mediating the functions of somatostatin: the emerging role of NO/cGMP,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 49–57, 2008.
[119]  F. Lopez, G. Ferjoux, P. Cordelier et al., “Neuronal nitric oxide synthase: a substrate for SHP-1 involved in sst2 somatostatin receptor growth inhibitory signaling,” The FASEB Journal, vol. 15, no. 12, pp. 2300–2302, 2001.
[120]  N. Benali, P. Cordelier, D. Calise et al., “Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9180–9185, 2000.
[121]  N. Douziech, E. Calvo, Z. Coulombe et al., “Inhibitory and stimulatory effects of somatostatin on two human pancreatic cancer cell lines: a primary role for tyrosine phosphatase SHP-1,” Endocrinology, vol. 140, no. 2, pp. 765–777, 1999.
[122]  M. Thangaraju, K. Sharma, D. Liu, S. H. Shen, and C. B. Srikant, “Interdependent regulation of intracellular acidification and SHP-1 in apoptosis,” Cancer Research, vol. 59, no. 7, pp. 1649–1654, 1999.
[123]  P. D. Zapata, R. M. Ropero, A. M. Valencia et al., “Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 2, pp. 915–926, 2002.
[124]  M. C. Zatelli, D. Piccin, F. Tagliati, A. Bottoni, A. Luchin, and E. C. D. Uberti, “Src homology-2-containing protein tyrosine phosphatase-1 restrains cell proliferation in human medullary thyroid carcinoma,” Endocrinology, vol. 146, no. 6, pp. 2692–2698, 2005.
[125]  F. Lopez, J. P. Estève, L. Buscail et al., “The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling,” The Journal of Biological Chemistry, vol. 272, no. 39, pp. 24448–24454, 1997.
[126]  C. Bousquet, N. Delesque, F. Lopez et al., “sst2 somatostatin receptor mediates negative regulation of insulin receptor signaling through the tyrosine phosphatase SHP-1,” The Journal of Biological Chemistry, vol. 273, no. 12, pp. 7099–7106, 1998.
[127]  M. Hortala, G. Ferjoux, A. Estival et al., “Inhibitory role of the somatostatin receptor sst2 on the intracrine-regulated cell proliferation induced by the 210-amino acid fibroblast growth factor-2 isoform. Implication of JAK2,” The Journal of Biological Chemistry, vol. 278, no. 23, pp. 20574–20581, 2003.
[128]  G. Ferjoux, F. Lopez, J. P. Esteve et al., “Critical role of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of cell proliferation,” Molecular Biology of the Cell, vol. 14, no. 9, pp. 3911–3928, 2003.
[129]  T. Florio, “Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 40–48, 2008.
[130]  J. Held-Feindt, F. Forstreuter, T. Pufe, and R. Mentlein, “Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells,” Molecular Brain Research, vol. 87, no. 1, pp. 12–21, 2001.
[131]  M. G. Cattaneo, J. E. Taylor, M. D. Culler, E. Nisoli, and L. M. Vicentini, “Selective stimulation of somatostatin receptor subtypes: differential effects on Ras/MAP kinase pathway and cell proliferation in human neuroblastoma cells,” FEBS Letters, vol. 481, no. 3, pp. 271–276, 2000.
[132]  T. Florio, A. Scorziello, S. Thellung et al., “Oncogene transformation of PC Cl3 clonal thyroid cell line induces an autonomous pattern of proliferation that correlates with a loss of basal and stimulated phosphotyrosine phosphatase activity,” Endocrinology, vol. 138, no. 9, pp. 3756–3763, 1997.
[133]  A. Massa, F. Barbieri, C. Aiello et al., “The expression of the phosphotyrosine phosphatase DEP-1/PTPη dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation,” The Journal of Biological Chemistry, vol. 279, no. 28, pp. 29004–29012, 2004.
[134]  A. Massa, F. Barbieri, C. Aiello et al., “The phosphotyrosine phosphatase η mediates somatostatin inhibition of glioma proliferation via the dephosphorylation of ERK1/2,” Annals of the New York Academy of Sciences, vol. 1030, pp. 264–274, 2004.
[135]  S. Arena, A. Pattarozzi, A. Massa et al., “An intracellular multi-effector complex mediates somatostatin receptor 1 activation of phospho-tyrosine phosphatase η,” Molecular Endocrinology, vol. 21, no. 1, pp. 229–246, 2007.
[136]  E. Ferrante, C. Pellegrini, S. Bondioni et al., “Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2,” Endocrine-Related Cancer, vol. 13, no. 3, pp. 955–962, 2006.
[137]  J. Guillermet, N. Saint-Laurent, P. Rochaix et al., “Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 155–160, 2003.
[138]  J. Guillermet-Guibert, N. Saint-Laurent, L. Davenne et al., “Novel synergistic mechanism for sst2 somatostatin and TNFα receptors to induce apoptosis: crosstalk between NF-κB and JNK pathways,” Cell Death and Differentiation, vol. 14, no. 2, pp. 197–208, 2007.
[139]  K. Sharma and C. B. Srikant, “Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells,” International Journal of Cancer, vol. 76, no. 2, pp. 259–266, 1998.
[140]  R. D. Murray, K. Kim, S. G. Ren, M. Chelly, Y. Umehara, and S. Melmed, “Central and peripheral actions of somatostatin on the growth hormone-IGF-I axis,” Journal of Clinical Investigation, vol. 114, no. 3, pp. 349–356, 2004.
[141]  P. Dasgupta, “Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis,” Pharmacology and Therapeutics, vol. 102, no. 1, pp. 61–85, 2004.
[142]  A. Albini, T. Florio, D. Giunciuglio et al., “Somatostatin controls Kaposi's sarcoma tumor growth through inhibition of angiogenesis,” The FASEB Journal, vol. 13, no. 6, pp. 647–655, 1999.
[143]  T. Florio, M. Morini, V. Villa et al., “Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities,” Endocrinology, vol. 144, no. 4, pp. 1574–1584, 2003.
[144]  T. Florio, S. Arena, A. Pattarozzi et al., “Basic fibroblast growth factor activates endothelial nitric-oxide synthase in CHO-K1 cells via the activation of ceramide synthesis,” Molecular Pharmacology, vol. 63, no. 2, pp. 297–310, 2003.
[145]  N. Mastrodimou, F. Kiagiadaki, M. Hodjarova, E. Karagianni, and K. Thermos, “Somatostatin receptors (sst2) regulate cGMP production in rat retina,” Regulatory Peptides, vol. 133, no. 1–3, pp. 41–46, 2006.
[146]  S. Pyronnet, C. Bousquet, S. Najib, R. Azar, H. Laklai, and C. Susini, “Antitumor effects of somatostatin,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 230–237, 2008.
[147]  A. Saveanu and P. Jaquet, “Somatostatin-dopamine ligands in the treatment of pituitary adenomas,” Reviews in Endocrine and Metabolic Disorders, vol. 10, no. 2, pp. 83–90, 2009.
[148]  T. Tateno, M. Kato, Y. Tani, K. Oyama, S. Yamada, and Y. Hirata, “Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas,” Endocrine Journal, vol. 56, no. 4, pp. 579–584, 2009.
[149]  A. Fusco, G. Gunz, P. Jaquet et al., “Somatostatinergic ligands in dopamine-sensitive and -resistant prolactinomas,” European Journal of Endocrinology, vol. 158, no. 5, pp. 595–603, 2008.
[150]  A. Saveanu, I. Morange-Ramos, G. Gunz, H. Dufour, A. Enjalbert, and P. Jaquet, “A luteinizing hormone-, alpha-subunit- and prolactin-secreting pituitary adenoma responsive to somatostatin analogs: in vivo and in vitro studies,” European Journal of Endocrinology, vol. 145, no. 1, pp. 35–41, 2001.
[151]  A. Yoshihara, O. Isozaki, N. Hizuka et al., “Expression of type 5 somatostatin receptor in TSH-secreting pituitary adenomas: a possible marker for predicting longterm response to octreotide therapy,” Endocrine Journal, vol. 54, no. 1, pp. 133–138, 2007.
[152]  M. Durán-Prado, A. Saveanu, R. M. Luque et al., “A potential inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 5, pp. 2497–2502, 2010.
[153]  G. F. Taboada, R. M. Luque, L. V. Neto et al., “Quantitative analysis of somatostatin receptor subtypes (1–5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR,” European Journal of Endocrinology, vol. 158, no. 3, pp. 295–303, 2008.
[154]  S. Melmed, R. Sternberg, D. Cook et al., “A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4405–4410, 2005.
[155]  D. C. Danila, J. N. S. Haidar, X. Zhang, L. Katznelson, M. D. Culler, and A. Klibanski, “Somatostatin receptor-specific analogs: effects on cell proliferation and growth hormone secretion in human somatotroph tumors,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 7, pp. 2976–2981, 2001.
[156]  E. Resmini, P. Dadati, J. L. Ravetti et al., “Clinical case seminar: rapid pituitary tumor shrinkage with dissociation between antiproliferative and antisecretory effects of a long-acting octreotide in an acromegalic patient,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 5, pp. 1592–1599, 2007.
[157]  T. Florio, S. Thellung, S. Arena et al., “Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro,” European Journal of Endocrinology, vol. 141, no. 4, pp. 396–408, 1999.
[158]  T. Florio, S. Thellung, A. Corsaro et al., “Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro,” Clinical Endocrinology, vol. 59, no. 1, pp. 115–128, 2003.
[159]  T. Cuny, A. Mohamed, T. Graillon, et al., “Somatostatin receptor sst2 gene transfer in human prolactinomas in vitro: impact on sensitivity to dopamine, somatostatin and dopastatin, in the control of prolactin secretion,” Molecular and Cellular Endocrinology, vol. 355, no. 1, pp. 106–113, 2012.
[160]  C. de Bruin, A. M. Pereira, R. A. Feelders et al., “Coexpression of dopamine and somatostatin receptor subtypes in corticotroph adenomas,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1118–1124, 2009.
[161]  R. van der Pas, W. W. de Herder, L. Hofland, et al., “New developments in medical therapy of Cushing's syndrome,” Endocrine-Related Cancer, vol. 19, no. 6, pp. R205–R223, 2012.
[162]  L. J. Hofland, J. van der Hoek, R. Feelders et al., “The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5,” European Journal of Endocrinology, vol. 152, no. 4, pp. 645–654, 2005.
[163]  M. Boscaro, W. H. Ludlam, B. Atkinson et al., “Treatment of pituitary-dependent Cushing's disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 115–122, 2009.
[164]  V. A. S. H. Dalm, L. J. Hofland, and S. W. J. Lamberts, “Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 262–277, 2008.
[165]  F. Gatto, F. Barbieri, L. Castelletti et al., “In vivo and in vitro response to octreotide LAR in a TSH-secreting adenoma: characterization of somatostatin receptor expression and role of subtype 5,” Pituitary, vol. 14, no. 2, pp. 141–147, 2011.
[166]  F. Gatto, F. Barbieri, M. Gatti, et al., “Balance between somatostatin and D2 receptor expression drives TSH-secreting adenoma response to somatostatin analogues and dopastatins,” Clinical Endocrinology, vol. 76, no. 3, pp. 407–414, 2012.
[167]  D. O'Toole, A. Saveanu, A. Couvelard et al., “The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies,” European Journal of Endocrinology, vol. 155, no. 6, pp. 849–857, 2006.
[168]  K. E. ?berg, J. Reubi, D. J. Kwekkeboom, and E. P. Krenning, “Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy,” Gastroenterology, vol. 139, no. 3, pp. 742.e1–753.e1, 2010.
[169]  A. Rinke, H. H. Müller, C. Schade-Brittinger et al., “Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group,” Journal of Clinical Oncology, vol. 27, no. 28, pp. 4656–4663, 2009.
[170]  C. Bousquet, C. Lasfargues, M. Chalabi, et al., “Clinical review: current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 3, pp. 727–737, 2012.
[171]  G. Mezo and M. Manea, “Receptor-mediated tumor targeting based on peptide hormones,” Expert Opinion on Drug Delivery, vol. 7, no. 1, pp. 79–96, 2010.
[172]  N. Dizeyi, L. Konrad, A. Bjartell et al., “Localization and mRNA expression of somatostatin receptor subtypes in human prostatic tissue and prostate cancer cell lines,” Urologic Oncology, vol. 7, no. 3, pp. 91–98, 2002.
[173]  F. Kosari, J. M. A. Munz, C. D. Savci-Heijink et al., “Identification of prognostic biomarkers for prostate cancer,” Clinical Cancer Research, vol. 14, no. 6, pp. 1734–1743, 2008.
[174]  L. Lattanzio, F. Tonissi, M. Monteverde, et al., “Differential molecular mechanism of docetaxel-octreotide combined treatment according to the docetaxel-resistance status in PC3 prostate cancer cells,” Anticancer Drugs, vol. 24, no. 2, pp. 120–130, 2012.
[175]  C. Lo Nigro, M. Maffi, J. L. Fischel, P. Formento, G. Milano, and M. Merlano, “The combination of docetaxel and the somatostatin analogue lanreotide on androgen-independent docetaxel-resistant prostate cancer: experimental data,” BJU International, vol. 102, no. 5, pp. 622–627, 2008.
[176]  A. V. Schally, J. B. Engel, G. Emons, N. L. Block, and J. Pinski, “Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors,” Current Drug Delivery, vol. 8, no. 1, pp. 11–25, 2011.
[177]  T. W. Friedlander, V. K. Weinberg, E. J. Small et al., “Effect of the somatostatin analog octreotide acetate on circulating insulin-like growth factor-1 and related peptides in patients with non-metastatic castration-resistant prostate cancer: results of a phase II study,” Urologic Oncology, vol. 30, no. 4, pp. 408–414, 2012.
[178]  M. Koutsilieris, C. S. Mitsiades, J. Bogdanos et al., “Combination of somatostatin analog, dexamethasone, and standard androgen ablation therapy in stage D3 prostate cancer patients with bone metastases,” Clinical Cancer Research, vol. 10, no. 13, pp. 4398–4405, 2004.
[179]  C. S. Mitsiades, J. Bogdanos, D. Karamanolakis, C. Milathianakis, T. Dimopoulos, and M. Koutsilieris, “Randomized controlled clinical trial of a combination of somatostatin analog and dexamethasone plus zoledronate versus zoledronate in patients with androgen ablation-refractory prostate cancer,” Anticancer Research, vol. 26, no. 5B, pp. 3693–3700, 2006.
[180]  U. Kumar, S. I. Grigorakis, H. L. Watt et al., “Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology,” Breast Cancer Research and Treatment, vol. 92, no. 2, pp. 175–186, 2005.
[181]  M. C. Pagliacci, R. Tognellini, F. Grignani, and I. Nicoletti, “Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201–995: effects on cell cycle parameters and apoptotic cell death,” Endocrinology, vol. 129, no. 5, pp. 2555–2562, 1991.
[182]  G. Prevost, E. Foehrle, F. Thomas et al., “Growth of human breast cancer cell lines is inhibited by the somatostatin analog BIM23014,” Endocrinology, vol. 129, no. 1, pp. 323–329, 1991.
[183]  G. Weckbecker, R. Liu, L. Tolcsvai, and C. Bruns, “Antiproliferative effects of the somatostatin analogue octreotide (SMS 201–995) on ZR-75-1 human breast cancer cells in vivo and in vitro,” Cancer Research, vol. 52, no. 18, pp. 4973–4978, 1992.
[184]  M. Duran-Prado, M. D. Gahete, M. Hergueta-Redondo, et al., “The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells,” Oncogene, vol. 31, no. 16, pp. 2049–2061, 2012.
[185]  R. Shi, H. Yu, J. McLarty, and J. Glass, “IGF-I and breast cancer: a meta-analysis,” International Journal of Cancer, vol. 111, no. 3, pp. 418–423, 2004.
[186]  D. L. Kleinberg, T. L. Wood, P. A. Furth, and A. V. Lee, “Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions,” Endocrine Reviews, vol. 30, no. 1, pp. 51–74, 2009.
[187]  W. Ruan, F. Fahlbusch, D. R. Clemmons et al., “SOM230 inhibits insulin-like growth factor-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3?” Molecular Endocrinology, vol. 20, no. 2, pp. 426–436, 2006.
[188]  D. L. Kleinberg, P. Ameri, and B. Singh, “Pasireotide, an IGF-I action inhibitor, prevents growth hormone and estradiol-induced mammary hyperplasia,” Pituitary, vol. 14, no. 1, pp. 44–52, 2011.
[189]  L. Canobbio, D. Cannata, L. Miglietta, and F. Boccardo, “Somatuline (BIM 23014) and tamoxifen treatment of postmenopausal breast cancer patients: clinical activity and effect on insulin-like growth factor-I (IGF-I) levels,” Anticancer Research, vol. 15, no. 6B, pp. 2687–2690, 1995.
[190]  J. N. Ingle, V. J. Suman, C. G. Kardinal, et al., “A randomized trial of tamoxifen alone or combined with octreotide in the treatment of women with metastatic breast carcinoma,” Cancer, vol. 85, no. 6, pp. 1284–1292, 1999.
[191]  J. T. Dolan, D. M. Miltenburg, T. S. Granchi, C. C. Miller, and F. C. Brunicardi, “Treatment of metastatic breast cancer with somatostatin analogues—a meta-analysis,” Annals of Surgical Oncology, vol. 8, no. 3, pp. 227–233, 2001.
[192]  E. Bajetta, G. Procopio, L. Ferrari et al., “A randomized, multicenter prospective trial assessing long-acting release octreotide pamoate plus tamoxifen as a first line therapy for advanced breast carcinoma,” Cancer, vol. 94, no. 2, pp. 299–304, 2002.
[193]  S. I. Helle, W. Mietlowski, J. P. Guastalla et al., “Effects of tamoxifen and octreotide LAR on the IGF-system compared with tamoxifen monotherapy,” European Journal of Cancer, vol. 41, no. 5, pp. 694–701, 2005.
[194]  H. Sommer, B. Pr?hl-Steimer, E. Bajetta, U. Haus, W. Janni, and A. Kay, “A randomized, double-blind, placebo-controlled, phase 3 trial comparing SMS 201–995 pa LAR plus tamoxifen versus tamoxifen plus placebo in women with locally recurrent or metastatic breast cancer,” Zentralblatt fur Gynakologie, vol. 123, no. 10, pp. 557–561, 2001.
[195]  K. I. Pritchard, L. E. Shepherd, J. A. Chapman, et al., “Randomized trial of tamoxifen versus combined tamoxifen and octreotide LAR therapy in the adjuvant treatment of early-stage breast cancer in postmenopausal women: NCIC CTG MA. 14,” Journal of Clinical Oncology, vol. 29, no. 29, pp. 3869–3876, 2011.
[196]  V. Vuaroqueaux, A. Dutour, N. Bourhim et al., “Increased expression of the mRNA encoding the somatostatin receptor subtype five in human colorectal adenocarcinoma,” Journal of Molecular Endocrinology, vol. 24, no. 3, pp. 397–408, 2000.
[197]  C. Z. Qiu, S. Z. Zhu, Y. Y. Wu, C. Wang, Z. X. Huang, and J. L. Qiu, “Relationship between somatostatin receptor subtype expression and clinicopathology, Ki-67, Bcl-2 and p53 in colorectal cancer,” World Journal of Gastroenterology, vol. 12, no. 13, pp. 2011–2015, 2006.
[198]  M. Bl?ker, M. Schmitz, A. Gocht et al., “Differential expression of somatostatin receptor subtypes in hepatocellular carcinomas,” Journal of Hepatology, vol. 41, no. 1, pp. 112–118, 2004.
[199]  K. Szepeshazi, A. V. Schally, A. Nagy, B. W. Wagner, A. M. Bajo, and G. Halmos, “Preclinical evaluation of therapeutic effects of targeted cytotoxic analogs of somatostatin and bombesin on human gastric carcinomas,” Cancer, vol. 98, no. 7, pp. 1401–1410, 2003.
[200]  G. Palmieri, L. Montella, C. Aiello et al., “Somatostatin analogues, a series of tissue transglutaminase inducers, as a new tool for therapy of mesenchimal tumors of the gastrointestinal tract,” Amino Acids, vol. 32, no. 3, pp. 395–400, 2007.
[201]  T. Florio, L. Montella, A. Corsaro et al., “In vitro and in vivo expression of somatostatin receptors in intermediate and malignant soft tissue tumors,” Anticancer Research, vol. 23, no. 3B, pp. 2465–2471, 2003.
[202]  R. Colucci, C. Blandizzi, N. Ghisu, T. Florio, and M. Del Tacca, “Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation,” British Journal of Pharmacology, vol. 155, no. 2, pp. 198–209, 2008.
[203]  S. Cascinu, E. del Ferro, and G. Catalano, “A randomised trial of octreotide vs best supportive care only in advanced gastrointestinal cancer patients refractory to chemotherapy,” British Journal of Cancer, vol. 71, no. 1, pp. 97–101, 1995.
[204]  R. M. Goldberg, C. G. Moertel, H. S. Wieand, et al., “A phase III evaluation of a somatostatin analogue (octreotide) in the treatment of patients with asymptomatic advanced colon carcinoma. North Central Cancer Treatment Group and the Mayo Clinic,” Cancer, vol. 76, no. 6, pp. 961–966, 1995.
[205]  Y. P. Hua, X. Y. Yin, B. G. Peng et al., “Mechanisms and influence of octreotide-induced regulation of somatostatin receptor 2 on hepatocellular carcinoma,” Chemotherapy, vol. 55, no. 5, pp. 312–320, 2009.
[206]  Y. Xie, S. Chen, C. H. Wang, and C. W. Tang, “Induction of necrosis in the hepatocellular carcinoma HepG2 xenografts treated with SOM230,” Zhonghua Gan Zang Bing Za Zhi, vol. 17, no. 10, pp. 759–764, 2009.
[207]  S. D. Prete, L. Montella, M. Caraglia et al., “Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: multicenter phase II So.LAR. study,” Cancer Chemotherapy and Pharmacology, vol. 66, no. 5, pp. 837–844, 2010.
[208]  J. C. Barbare, O. Bouché, F. Bonnetain et al., “Treatment of advanced hepatocellular carcinoma with long-acting octreotide: a phase III multicentre, randomised, double blind placebo-controlled study,” European Journal of Cancer, vol. 45, no. 10, pp. 1788–1797, 2009.
[209]  K. Jackson, M. Soutto, D. Peng, et al., “Epigenetic silencing of somatostatin in gastric cancer,” Digestive Diseases and Sciences, vol. 56, no. 1, pp. 125–130, 2011.
[210]  S. Gao, B. P. Yu, Y. Li, W. G. Dong, and H. S. Luo, “Antiproliferative effect of octreotide on gastric cancer cells mediated by inhibition of Akt/PKB and telomerase,” World Journal of Gastroenterology, vol. 9, no. 10, pp. 2362–2365, 2003.
[211]  C. Tang, C. Liu, X. Zhou, and C. Wang, “Enhanced inhibitive effects of combination of rofecoxib and octreotide on the growth of human gastric cancer,” International Journal of Cancer, vol. 112, no. 3, pp. 470–474, 2004.
[212]  M. T. Huang, Z. X. Chen, B. Wei et al., “Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide,” Acta Pharmacologica Sinica, vol. 28, no. 11, pp. 1842–1850, 2007.
[213]  B. Zhao, P. Yang, J. Yang, et al., “A randomized trial of somatostatin to regulate the VEGFs/VEGFRs in patients with gastric cancer,” Hepatogastroenterology, vol. 58, no. 109, pp. 1425–1430, 2011.
[214]  J. Held-Feindt, B. Krisch, F. Forstreuter, and R. Mentlein, “Somatostatin receptors in gliomas,” Journal of Physiology Paris, vol. 94, no. 3-4, pp. 251–258, 2000.
[215]  K. Lamszus, W. Meyerhof, and M. Westphal, “Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas,” Journal of Neuro-Oncology, vol. 35, no. 3, pp. 353–364, 1997.
[216]  M. G. Cattaneo, D. Gentilini, and L. M. Vicentini, “Deregulated human glioma cell motility: inhibitory effect of somatostatin,” Molecular and Cellular Endocrinology, vol. 256, no. 1-2, pp. 34–39, 2006.
[217]  B. Grobben, P. P. de Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell and Tissue Research, vol. 310, no. 3, pp. 257–270, 2002.
[218]  F. Barbieri and T. Florio, “Characterization of the differential efficiacy of somatostatin receptor agonists in the inhibition of the growth of experimental gliomas and identification of the intracellular mechanisms involved,” European Journal of Clinical and Medical Oncology, vol. 3, no. 3, pp. 46–53, 2011.
[219]  J. C. Reubi, R. Maurer, and J. G. M. Klijn, “High incidence of somatostatin receptors in human meningiomas: biochemical characterization,” The Journal of Clinical Endocrinology and Metabolism, vol. 63, no. 2, pp. 433–438, 1986.
[220]  S. Arena, F. Barbieri, S. Thellung et al., “Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity,” Journal of Neuro-Oncology, vol. 66, no. 1-2, pp. 155–166, 2004.
[221]  M. C. Chamberlain, “The role of chemotherapy and targeted therapy in the treatment of intracranial meningioma,” Current Opinion in Oncology, vol. 24, no. 6, pp. 666–671, 2012.
[222]  M. C. Chamberlain, M. J. Glantz, and C. E. Fadul, “Recurrent meningioma: salvage therapy with long-acting somatostatin analogue,” Neurology, vol. 69, no. 10, pp. 969–973, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133