全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SNP Markers and Their Impact on Plant Breeding

DOI: 10.1155/2012/728398

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-increasing sequence information in public databases; however, complex genomes pose special challenges in the identification of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key experimental strategies and cases exemplifying their impact. 1. Introduction Allelic variations within a genome of the same species can be classified into three major groups that include differences in the number of tandem repeats at a particular locus [microsatellites, or simple sequence repeats (SSRs)] [1], segmental insertions/deletions (InDels) [2], and single nucleotide polymorphisms (SNPs) [3]. In order to detect and track these variations in the individuals of a progeny at DNA level, researchers have been developing and using genetic tools called molecular markers [4]. Although SSRs, InDels, and SNPs are the three major allelic variations discovered so far, a plethora of molecular markers were developed to detect the polymorphisms that resulted from these three types of variation [5]. Evolution of molecular markers has been primarily driven by the throughput and cost of detection method and the level of reproducibility [6]. Depending on detection method and throughput, all molecular markers can be divided into three major groups: (1) low-throughput, hybridization-based markers such as restriction fragment length polymorphisms (RFLPs) [4]; (2) medium-throughput, PCR-based markers that include random amplification of polymorphic DNA (RAPD) [7], amplified fragment length polymorphism (AFLP) [8], SSRs [9]; (3) high-throughput (HTP) sequence-based markers: SNPs [3]. In late eighties, RFLPs were the most popular molecular markers that were widely

References

[1]  J. L. Weber and P. E. May, “Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction,” American Journal of Human Genetics, vol. 44, no. 3, pp. 388–396, 1989.
[2]  R. Ophir and D. Graur, “Patterns and rates of indel evolution in processed pseudogenes from humans and murids,” Gene, vol. 205, no. 1-2, pp. 191–202, 1997.
[3]  D. G. Wang, J. B. Fan, C. J. Siao et al., “Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome,” Science, vol. 280, no. 5366, pp. 1077–1082, 1998.
[4]  D. Botstein, R. L. White, M. Skolnick, and R. W. Davis, “Construction of a genetic linkage map in man using restriction fragment length polymorphisms,” American Journal of Human Genetics, vol. 32, no. 3, pp. 314–331, 1980.
[5]  P. K. Gupta, R. K. Varshney, P. C. Sharma, and B. Ramesh, “Molecular markers and their applications in wheat breeding,” Plant Breeding, vol. 118, no. 5, pp. 369–390, 1999.
[6]  R. Bernardo, “Molecular markers and selection for complex traits in plants: learning from the last 20 years,” Crop Science, vol. 48, no. 5, pp. 1649–1664, 2008.
[7]  J. Welsh and M. McClelland, “Fingerprinting genomes using PCR with arbitrary primers,” Nucleic Acids Research, vol. 18, no. 24, pp. 7213–7218, 1990.
[8]  P. Vos, R. Hogers, M. Bleeker et al., “AFLP: a new technique for DNA fingerprinting,” Nucleic Acids Research, vol. 23, no. 21, pp. 4407–4414, 1995.
[9]  H. J. Jacob, K. Lindpaintner, S. E. Lincoln et al., “Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat,” Cell, vol. 67, no. 1, pp. 213–224, 1991.
[10]  E. S. Lander and S. Botstein, “Mapping mendelian factors underlying quantitative traits using RFLP linkage maps,” Genetics, vol. 121, no. 1, p. 185, 1989.
[11]  J. G. K. Williams, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,” Nucleic Acids Research, vol. 18, no. 22, pp. 6531–6535, 1990.
[12]  Z. Zhang, X. Guo, B. Liu, L. Tang, and F. Chen, “Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms,” African Journal of Biotechnology, vol. 10, no. 15, pp. 2825–2832, 2011.
[13]  W. Powell, G. C. Machray, and J. Proven, “Polymorphism revealed by simple sequence repeats,” Trends in Plant Science, vol. 1, no. 7, pp. 215–222, 1996.
[14]  S. Ghosh, P. Malhotra, P. V. Lalitha, S. Guha-Mukherjee, and V. S. Chauhan, “Novel genetic mapping tools in plants: SNPs and LD-based approaches,” Plant Science, vol. 162, no. 3, pp. 329–333, 2002.
[15]  M. W. Ganal, T. Altmann, and M. S. R?der, “SNP identification in crop plants,” Current Opinion in Plant Biology, vol. 12, no. 2, pp. 211–217, 2009.
[16]  B. C. Meyers, S. V. Tingey, and M. Morgante, “Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome,” Genome Research, vol. 11, no. 10, pp. 1660–1676, 2001.
[17]  S. I. Wright, I. V. Bi, S. C. Schroeder et al., “Evolution: the effects of artificial selection on the maize genome,” Science, vol. 308, no. 5726, pp. 1310–1314, 2005.
[18]  J. Batley, G. Barker, H. O'Sullivan, K. J. Edwards, and D. Edwards, “Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data,” Plant Physiology, vol. 132, no. 1, pp. 84–91, 2003.
[19]  A. Pratap, S. Gupta, J. Kumar, and R. Solanki, “Soybean,” Technological Innovations in Major World Oil Crops, vol. 1, pp. 293–321, 2012.
[20]  I. Y. Choi, D. L. Hyten, L. K. Matukumalli et al., “A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis,” Genetics, vol. 176, no. 1, pp. 685–696, 2007.
[21]  E. R. Mardis, “The impact of next-generation sequencing technology on genetics,” Trends in Genetics, vol. 24, no. 3, pp. 133–141, 2008.
[22]  O. Morozova and M. A. Marra, “Applications of next-generation sequencing technologies in functional genomics,” Genomics, vol. 92, no. 5, pp. 255–264, 2008.
[23]  W. B. Barbazuk, S. J. Emrich, H. D. Chen, L. Li, and P. S. Schnable, “SNP discovery via 454 transcriptome sequencing,” The Plant Journal, vol. 51, no. 5, pp. 910–918, 2007.
[24]  M. Trick, Y. Long, J. Meng, and I. Bancroft, “Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing,” Plant Biotechnology Journal, vol. 7, no. 4, pp. 334–346, 2009.
[25]  E. Novaes, D. R. Drost, W. G. Farmerie et al., “High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome,” BMC Genomics, vol. 9, article 312, 2008.
[26]  P. C. Bundock, F. G. Eliott, G. Ablett et al., “Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing,” Plant Biotechnology Journal, vol. 7, no. 4, pp. 347–354, 2009.
[27]  T. L. Parchman, K. S. Geist, J. A. Grahnen, C. W. Benkman, and C. A. Buerkle, “Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery,” BMC Genomics, vol. 11, no. 1, article 180, 2010.
[28]  K. Lai, C. Duran, P. J. Berkman et al., “Single nucleotide polymorphism discovery from wheat next-generation sequence data,” Plant Biotechnology Journal, vol. 10, no. 6, pp. 743–749, 2012.
[29]  D. Kuhn, “Design of an Illumina Infinium 6k SNPchip for genotyping two large avocado mapping populations,” in Proceedings of the 20th Conference on Plant and Animal Genome, San Diego, CA, January 2012.
[30]  J. R. Russell, M. Bayer, C. Booth et al., “Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum),” BMC Plant Biology, vol. 11, article 147, 2011.
[31]  E. Hodges, Z. Xuan, V. Balija et al., “Genome-wide in situ exon capture for selective resequencing,” Nature Genetics, vol. 39, no. 12, pp. 1522–1527, 2007.
[32]  N. M. Springer, K. Ying, Y. Fu et al., “Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content,” PLoS Genetics, vol. 5, no. 11, Article ID e1000734, 2009.
[33]  R. K. Varshney, “Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping,” in Molecular Techniques in Crop Improvement, S. M. Jain and D. S. Brar, Eds., pp. 119–142, 2009.
[34]  A. Dean, “On a chromosome far, far away: LCRs and gene expression,” Trends in Genetics, vol. 22, no. 1, pp. 38–45, 2006.
[35]  Y. Yuan, P. J. SanMiguel, and J. L. Bennetzen, “High-Cot sequence analysis of the maize genome,” The Plant Journal, vol. 34, no. 2, pp. 249–255, 2003.
[36]  J. Emberton, J. Ma, Y. Yuan, P. SanMiguel, and J. L. Bennetzen, “Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries,” Genome Research, vol. 15, no. 10, pp. 1441–1446, 2005.
[37]  D. T. Okou, K. M. Steinberg, C. Middle, D. J. Cutler, T. J. Albert, and M. E. Zwick, “Microarray-based genomic selection for high-throughput resequencing,” Nature Methods, vol. 4, no. 11, pp. 907–909, 2007.
[38]  N. J. van Orsouw, R. C. J. Hogers, A. Janssen et al., “Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes,” PLoS ONE, vol. 2, no. 11, Article ID e1172, 2007.
[39]  N. A. Baird, P. D. Etter, T. S. Atwood et al., “Rapid SNP discovery and genetic mapping using sequenced RAD markers,” PLoS ONE, vol. 3, no. 10, Article ID e3376, 2008.
[40]  J. A. Mammadov, W. Chen, R. Ren et al., “Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding,” Theoretical and Applied Genetics, vol. 121, no. 3, pp. 577–588, 2010.
[41]  Y. Chutimanitsakun, R. W. Nipper, A. Cuesta-Marcos et al., “Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley,” BMC Genomics, vol. 12, article 4, 2011.
[42]  H. Yu, W. Xie, J. Wang et al., “Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers,” PLoS ONE, vol. 6, no. 3, Article ID e17595, 2011.
[43]  A. Bus, J. Hecht, B. Huettel, R. Reinhardt, and B. Stich, “High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing,” BMC Genomics, vol. 13, no. 1, p. 281, 2012.
[44]  J. Tang, J. A. M. Leunissen, R. E. Voorrips, C. G. van der Linden, and B. Vosman, “HaploSNPer: a web-based allele and SNP detection tool,” BMC Genetics, vol. 9, article 23, 2008.
[45]  A. Narechania, M. A. Gore, E. S. Buckler, et al., “Large-scale discovery of gene-enriched SNPs,” The Plant Genome, vol. 2, no. 2, pp. 121–133, 2009.
[46]  J. C. Nelson, S. Wang, Y. Wu et al., “Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum,” BMC Genomics, vol. 12, article 352, 2011.
[47]  R. J. Elshire, J. C. Glaubitz, Q. Sun et al., “A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species,” PLoS ONE, vol. 6, no. 5, Article ID e19379, 2011.
[48]  S. R. Browning and B. L. Browning, “Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering,” American Journal of Human Genetics, vol. 81, no. 5, pp. 1084–1097, 2007.
[49]  B. N. Howie, P. Donnelly, and J. Marchini, “A flexible and accurate genotype imputation method for the next generation of genome-wide association studies,” PLoS Genetics, vol. 5, no. 6, Article ID e1000529, 2009.
[50]  X. Huang, X. Wei, T. Sang et al., “Genome-wide asociation studies of 14 agronomic traits in rice landraces,” Nature Genetics, vol. 42, no. 11, pp. 961–967, 2010.
[51]  J. Marchini and B. Howie, “Genotype imputation for genome-wide association studies,” Nature Reviews Genetics, vol. 11, no. 7, pp. 499–511, 2010.
[52]  J. B. Fan, A. Oliphant, R. Shen et al., “Highly parallel SNP genotyping,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 68, pp. 69–78, 2003.
[53]  F. J. Steemers and K. L. Gunderson, “Whole genome genotyping technologies on the BeadArray? platform,” Biotechnology Journal, vol. 2, no. 1, pp. 41–49, 2007.
[54]  K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, “Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization,” Genome Research, vol. 4, no. 6, pp. 357–362, 1995.
[55]  S. P. Kumpatla, R. Buyyarapu, I. Y. Abdurakhmonov, and J. A. Mammadov, “Genomics-assisted plant breeding in the 21st century: technological advances and progress,” in Plant Breeding, I. Y. Abdurakhmonov, Ed., pp. 131–184.
[56]  R. Buyyarapu, R. Ren, S. Kumpatla et al., “In silico discovery and validation of SNP markers for molecular breeding in cotton,” in Proceedings of the 19th Conference on Plant & Animal Genome, San Diego, Calif, USA, January 2011.
[57]  S. D. Tanksley, “Mapping polygenes,” Annual Review of Genetics, vol. 27, pp. 205–233, 1993.
[58]  D. Bhattramakki, M. Dolan, M. Hanafey et al., “Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers,” Plant Molecular Biology, vol. 48, no. 5-6, pp. 539–547, 2002.
[59]  E. S. Jones, H. Sullivan, D. Bhattramakki, and J. S. C. Smith, “A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.),” Theoretical and Applied Genetics, vol. 115, no. 3, pp. 361–371, 2007.
[60]  S. Konishi, T. Izawa, S. Y. Lin et al., “An SNP caused loss of seed shattering during rice domestication,” Science, vol. 312, no. 5778, pp. 1392–1396, 2006.
[61]  A. S. Iyer and S. R. McCouch, “The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance,” Molecular Plant-Microbe Interactions, vol. 17, no. 12, pp. 1348–1354, 2004.
[62]  E. Drenkard, B. G. Richter, S. Rozen et al., “A simple procedure for the analysis of single nucleotide polymorphism facilitates map-based cloning in Arabidopsis,” Plant Physiology, vol. 124, no. 4, pp. 1483–1492, 2000.
[63]  K. Garg, P. Green, and D. A. Nickerson, “Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags,” Genome Research, vol. 9, no. 11, pp. 1087–1092, 1999.
[64]  S. Nasu, J. Suzuki, R. Ohta et al., “Search for and analysis of single nucleotide polymorphisms (SNPS) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers,” DNA Research, vol. 9, no. 5, pp. 163–171, 2002.
[65]  K. Hayashi, N. Hashimoto, M. Daigen, and I. Ashikawa, “Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus,” Theoretical and Applied Genetics, vol. 108, no. 7, pp. 1212–1220, 2004.
[66]  M. Ashikari and M. Matsuoka, “Identification, isolation and pyramiding of quantitative trait loci for rice breeding,” Trends in Plant Science, vol. 11, no. 7, pp. 344–350, 2006.
[67]  K. K. Jena and D. J. Mackill, “Molecular markers and their use in marker-assisted selection in rice,” Crop Science, vol. 48, no. 4, pp. 1266–1276, 2008.
[68]  R. K. Varshney, D. A. Hoisington, and A. K. Tyagi, “Advances in cereal genomics and applications in crop breeding,” Trends in Biotechnology, vol. 24, no. 11, pp. 490–499, 2006.
[69]  E. S. Buckler, J. B. Holland, P. J. Bradbury et al., “The genetic architecture of maize flowering time,” Science, vol. 325, no. 5941, pp. 714–718, 2009.
[70]  J. A. Poland, P. J. Bradbury, E. S. Buckler, and R. J. Nelson, “Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 17, pp. 6893–6898, 2011.
[71]  P. Zheng, W. B. Allen, K. Roesler et al., “A phenylalanine in DGAT is a key determinant of oil content and composition in maize,” Nature Genetics, vol. 40, no. 3, pp. 367–372, 2008.
[72]  E. Akhunov, C. Nicolet, and J. Dvorak, “Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay,” Theoretical and Applied Genetics, vol. 119, no. 3, pp. 507–517, 2009.
[73]  A. M. Allen, G. L. Barker, S. T. Berry et al., “Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.),” Plant Biotechnology Journal, vol. 9, no. 9, pp. 1086–1099, 2011.
[74]  A. Bérard, M. C. Le Paslier, M. Dardevet et al., “High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.),” Plant Biotechnology Journal, vol. 7, no. 4, pp. 364–374, 2009.
[75]  M. O. Winfield, P. A. Wilkinson, A. M. Allen et al., “Targeted re-sequencing of the allohexaploid wheat exome,” Plant Biotechnology Journal, vol. 10, no. 6, pp. 733–742, 2012.
[76]  E. S. Lagudah, S. G. Krattinger, S. Herrera-Foessel et al., “Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens,” Theoretical and Applied Genetics, vol. 119, no. 5, pp. 889–898, 2009.
[77]  H. Buerstmayr, T. Ban, and J. A. Anderson, “QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review,” Plant Breeding, vol. 128, no. 1, pp. 1–26, 2009.
[78]  A. N. Bernardo, H. Ma, D. Zhang, and G. Bai, “Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance,” Molecular Breeding, vol. 29, no. 2, pp. 477–488, 2012.
[79]  P. K. Gupta, P. Langridge, and R. R. Mir, “Marker-assisted wheat breeding: present status and future possibilities,” Molecular Breeding, vol. 26, no. 2, pp. 145–161, 2010.
[80]  K. S. Kim, S. Bellendir, K. A. Hudson et al., “Fine mapping the soybean aphid resistance gene Rag1 in soybean,” Theoretical and Applied Genetics, vol. 120, no. 5, pp. 1063–1071, 2010.
[81]  K. S. Kim, C. B. Hill, G. L. Hartman, D. L. Hyten, M. E. Hudson, and B. W. Diers, “Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538,” Theoretical and Applied Genetics, vol. 121, no. 3, pp. 599–610, 2010.
[82]  B. K. Ha, R. S. Hussey, and H. R. Boerma, “Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean,” Crop Science, vol. 47, no. 2, pp. S73–S82, 2007.
[83]  X. Hu, M. Sullivan-Gilbert, M. Gupta, and S. A. Thompson, “Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.),” Theoretical and Applied Genetics, vol. 113, no. 3, pp. 497–507, 2006.
[84]  A. Lehmensiek, M. W. Sutherland, and R. B. McNamara, “The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley,” Theoretical and Applied Genetics, vol. 117, no. 5, pp. 721–728, 2008.
[85]  M. K. Grimmer, S. Trybush, S. Hanley, S. A. Francis, A. Karp, and M. J. C. Asher, “An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus,” Theoretical and Applied Genetics, vol. 114, no. 7, pp. 1151–1160, 2007.
[86]  M. K. Grimmer, T. Kraft, S. A. Francis, and M. J. C. Asher, “QTL mapping of BNYVV resistance from the WB258 source in sugar beet,” Plant Breeding, vol. 127, no. 6, pp. 650–652, 2008.
[87]  W. Muchero, N. N. Diop, P. R. Bhat et al., “A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18159–18164, 2009.
[88]  G. Jander, S. R. Norris, S. D. Rounsley, D. F. Bush, I. M. Levin, and R. L. Last, “Arabidopsis map-based cloning in the post-genome era,” Plant Physiology, vol. 129, no. 2, pp. 440–450, 2002.
[89]  I. Y. Abdurakhmonov and A. Abdukarimov, “Application of association mapping to understanding the genetic diversity of plant germplasm resources,” International Journal of Plant Genomics, vol. 2008, Article ID 574927, 2008.
[90]  D. Hall, C. Tegstr?m, and P. K. Ingvarsson, “Using association mapping to dissect the genetic basis of complex traits in plants,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 2, pp. 157–165, 2010.
[91]  S. Myles, J. Peiffer, P. J. Brown et al., “Association mapping: critical considerations shift from genotyping to experimental design,” Plant Cell, vol. 21, no. 8, pp. 2194–2202, 2009.
[92]  M. Gore, E. S. Buckler, J. Yu, and C. Zhu, “Status and prospects of association mapping in plants,” The Plant Genome, vol. 1, no. 1, pp. 5–20, 2008.
[93]  J. A. Rafalski, “Association genetics in crop improvement,” Current Opinion in Plant Biology, vol. 13, no. 2, pp. 174–180, 2010.
[94]  A. Beló, P. Zheng, S. Luck et al., “Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize,” Molecular Genetics and Genomics, vol. 279, no. 1, pp. 1–10, 2008.
[95]  F. Tian, P. J. Bradbury, P. J. Brown et al., “Genome-wide association study of leaf architecture in the maize nested association mapping population,” Nature Genetics, vol. 43, no. 2, pp. 159–162, 2011.
[96]  J. K. Roy, K. P. Smith, G. J. Muehlbauer, S. Chao, T. J. Close, and B. J. Steffenson, “Association mapping of spot blotch resistance in wild barley,” Molecular Breeding, vol. 26, no. 2, pp. 243–256, 2010.
[97]  K. Pajerowska-Mukhtar, B. Stich, U. Achenbach et al., “Single nucleotide polymorphisms in the Allene Oxide Synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars,” Genetics, vol. 181, no. 3, pp. 1115–1127, 2009.
[98]  K. L. Kump, P. J. Bradbury, R. J. Wisser et al., “Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population,” Nature Genetics, vol. 43, no. 2, pp. 163–168, 2011.
[99]  A. L. Harper, M. Trick, J. Higgins et al., “Associative transcriptomics of traits in the polyploid crop species Brassica napus,” Nature Biotechnology, vol. 30, no. 8, pp. 798–802, 2012.
[100]  Y. Xu and J. H. Crouch, “Marker-assisted selection in plant breeding: from publications to practice,” Crop Science, vol. 48, no. 2, pp. 391–407, 2008.
[101]  B. C. Y. Collard and D. J. Mackill, “Marker-assisted selection: an approach for precision plant breeding in the twenty-first century,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1491, pp. 557–572, 2008.
[102]  E. M. Septiningsih, A. M. Pamplona, D. L. Sanchez et al., “Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond,” Annals of Botany, vol. 103, no. 2, pp. 151–160, 2009.
[103]  L. Jin, Y. Lu, Y. Shao et al., “Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.),” Journal of Cereal Science, vol. 51, no. 1, pp. 159–164, 2010.
[104]  M. Asif, T. Shaheen, N. Tabbasam, Y. Zafar, and A. H. Paterson, “Marker-assisted breeding in higher plants,” Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation, vol. 6, pp. 39–76, 2011.
[105]  R. Naidoo, G. M. F. Watson, J. Derera, P. Tongoona, and M. Laing, “Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme,” Molecular Breeding, vol. 30, pp. 1207–1217, 2012.
[106]  S. R. Eathington, T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull, “Molecular markers in a commercial breeding program,” Crop Science, vol. 47, supplement 3, pp. S154–S163, 2007.
[107]  M. L. Rosso, S. A. Burleson, L. M. Maupin, and K. M. Rainey, “Development of breeder-friendly markers for selection of MIPS1 mutations in soybean,” Molecular Breeding, vol. 28, no. 1, pp. 127–132, 2011.
[108]  J. M. Ribaut and M. Ragot, “Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives,” Journal of Experimental Botany, vol. 58, no. 2, pp. 351–360, 2007.
[109]  R. Ren, B. A. Nagel, S. P. Kumpatla et al., “Maize Cytoplasmic Male Sterility (Cms) C-Type Restorer Rf4 Gene, Molecular Markers And Their Use,” Google Patents, 2011.
[110]  M. Ragot, M. Lee, E. Guimar?es et al., “Marker-assisted selection in maize: current status, potential, limitations and perspertives from the private and public sectors,” Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, pp. 117–150, 2007.
[111]  H. Riday, “Paternity testing: a non-linkage based marker-assisted selection scheme for outbred forage species,” Crop Science, vol. 51, no. 2, pp. 631–641, 2011.
[112]  D. W. Gjertson, C. H. Brenner, M. P. Baur et al., “ISFG: recommendations on biostatistics in paternity testing,” Forensic Science International, vol. 1, no. 3-4, pp. 223–231, 2007.
[113]  T. H. E. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of total genetic value using genome-wide dense marker maps,” Genetics, vol. 157, no. 4, pp. 1819–1829, 2001.
[114]  E. L. Heffner, M. E. Sorrells, and J. L. Jannink, “Genomic selection for crop improvement,” Crop Science, vol. 49, no. 1, pp. 1–12, 2009.
[115]  Z. Shengqiang, J. C. M. Dekkers, R. L. Fernando, and J. L. Jannink, “Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study,” Genetics, vol. 182, no. 1, pp. 355–364, 2009.
[116]  B. Hayes and M. Goddard, “Genome-wide association and genomic selection in animal breeding,” Genome, vol. 53, no. 11, pp. 876–883, 2010.
[117]  J. L. Jannink, A. J. Lorenz, and H. Iwata, “Genomic selection in plant breeding: from theory to practice,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 2, pp. 166–177, 2010.
[118]  A. M. Mastrangelo, E. Mazzucotelli, D. Guerra, P. Vita, and L. Cattivelli, “Improvement of drought resistance in crops: from conventional breeding to genomic selection,” Crop Stress and Its Management, pp. 225–259, 2012.
[119]  M. D. V. Resende, M. F. R. Resende Jr., C. P. Sansaloni et al., “Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees,” New Phytologist, vol. 194, no. 1, pp. 116–128, 2012.
[120]  Y. Zhao, M. Gowda, W. Liu et al., “Accuracy of genomic selection in European maize elite breeding populations,” Theoretical and Applied Genetics, vol. 124, no. 4, pp. 769–776, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413