全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

DOI: 10.1155/2013/905471

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by using N,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH) having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery. 1. Introduction Currently, natural polymers are being extensively explored for the fabrication of hydrogels, owing to their biodegradability, biocompatibility, nontoxicity, and availability. Consequently, considerable attention has been given to bacterial cellulose (BC), a natural polymer, because of its high mechanical strength, thermal stability, biocompatibility, and purity [1]. However, its application in the synthesis of hydrogels is limited by its insolubility in common solvents owing to strong inter- and intramolecular hydrogen bonding. Thus, solubilization of BC in appropriate solvents could extend its application in the fabrication of films, hydrogels, and membranes and improve its purity and mechanical strength for pharmaceutical and biomedical applications. Although this macromolecule has been successfully solubilized in lithium chloride/N,N-dimethylacetamide [2] and N-methylmorpholine-N-oxide monohydrate [3], its use is limited to laboratory-scale operation because it is highly toxic. To overcome this challenge, a sodium hydroxide (NaOH) complex solvent was prepared. Cellulose with a low degree of polymerization (DP < 300) has been reported to easily dissolve in NaOH (7–10%?w/v) at low temperatures (?5°C to ?15°C) [4]. Conversely, cellulose with a high degree of polymerization (DP > 300) has been found not to be easily dissolve in NaOH solution alone [5]. The degree of polymerization of BC is in the range of 2000 and 6000 [6], but in some cases it

References

[1]  A. G. Abadi, M. C. I. M. Amin, N. Ahmad, H. Katas, and J. A. Jamal, “Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties,” Sains Malaysiana, vol. 41, no. 5, pp. 561–568, 2012.
[2]  C. L. McCormick, P. A. Callais, and B. H. Hutchinson Jr., “Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide,” Macromolecules, vol. 18, no. 12, pp. 2394–2401, 1985.
[3]  D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte Chemie—International Edition, vol. 44, no. 22, pp. 3358–3393, 2005.
[4]  M. Egal, T. Budtova, and P. Navard, “Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0°C and the limit of cellulose dissolution,” Biomacromolecules, vol. 8, no. 7, pp. 2282–2287, 2007.
[5]  J. Cai and L. Zhang, “Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions,” Macromolecular Bioscience, vol. 5, no. 6, pp. 539–548, 2005.
[6]  R. Jonas and L. F. Farah, “Production and application of microbial cellulose,” Polymer Degradation and Stability, vol. 59, no. 1–3, pp. 101–106, 1998.
[7]  K. Watanabe, M. Tabuchi, Y. Morinaga, and F. Yoshinaga, “Structural features and properties of bacterial cellulose produced in agitated culture,” Cellulose, vol. 5, no. 3, pp. 187–200, 1998.
[8]  S. Zhang, F. X. Li, J. Yu, and Y. L. Hsieh, “Dissolution behaviour and solubility of cellulose in NaOH complex solution,” Carbohydrate Polymers, vol. 81, no. 3, pp. 668–674, 2010.
[9]  A. Nakayama, A. Kakugo, J. P. Gong et al., “High mechanical strength double-network hydrogel with bacterial cellulose,” Advanced Functional Materials, vol. 14, no. 11, pp. 1124–1128, 2004.
[10]  J. Kim, Z. Cai, H. S. Lee, G. S. Choi, D. H. Lee, and C. Jo, “Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application,” Journal of Polymer Research, vol. 18, no. 4, pp. 739–744, 2011.
[11]  A. L. Buyanov, I. V. Gofman, L. G. Revel'skaya, A. K. Khripunov, and A. A. Tkachenko, “Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, no. 1, pp. 102–111, 2010.
[12]  N. Halib, M. C. I. M. Amin, I. Ahmad, Z. M. Hashim, and N. Jamal, “Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli,” Sains Malaysiana, vol. 38, no. 5, pp. 785–791, 2009.
[13]  M. C. I. M. Amin, N. Halib, N. Ahmad, and I. Ahmad, “Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery,” Carbohydrate Polymers, vol. 88, no. 2, pp. 465–473, 2012.
[14]  N. Halib, M. C. I. M. Amin, and I. Ahmad, “Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2920–2929, 2010.
[15]  J. Zhang, J. Rong, W. Li, Z. Lin, and X. Zhang, “Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel,” Acta Polymerica Sinica, no. 6, pp. 602–607, 2011.
[16]  Z. Zhao, Z. Li, Q. Xia, H. Xi, and Y. Lin, “Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation,” European Polymer Journal, vol. 44, no. 4, pp. 1217–1224, 2008.
[17]  J. Jovanovic and B. Adnadjevic, “Influence of microwave heating on the kinetic of acrylic acid polymerization and crosslinking,” Journal of Applied Polymer Science, vol. 116, no. 1, pp. 55–63, 2010.
[18]  Z. X. Zhao, Z. Li, Q. B. Xia, E. Bajalis, H. X. Xi, and Y. S. Lin, “Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation,” Chemical Engineering Journal, vol. 142, no. 3, pp. 263–270, 2008.
[19]  A. Kumar, K. Singh, and M. Ahuja, “Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior,” Carbohydrate Polymers, vol. 76, no. 2, pp. 261–267, 2009.
[20]  G. B. Marandi, K. Esfandiari, F. Biranvand, M. Babapour, S. Sadeh, and G. R. Mahdavinia, “PH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly(acrylamide) superabsorbent hydrogels,” Journal of Applied Polymer Science, vol. 109, no. 2, pp. 1083–1092, 2008.
[21]  A. Mohanan, B. Vishalakshi, and S. Ganesh, “Swelling and diffusion characteristics of stimuli-responsive N-isopropylacrylamide and κ-carrageenan semi-IPN hydrogels,” International Journal of Polymeric Materials, vol. 60, no. 10, pp. 787–798, 2011.
[22]  Z. Peng and F. Chen, “Synthesis and properties of lignin-based polyurethane hydrogels,” International Journal of Polymeric Materials, vol. 60, no. 9, pp. 674–683, 2011.
[23]  Y. M. Mohan, P. S. K. Murthy, H. Sudhakar, B. V. K. Naidu, K. M. Raju, and M. P. Raju, “Swelling and diffusion properties of poly(acrylamide-co-maleic acid) hydrogels: a study with different crosslinking agents,” International Journal of Polymeric Materials, vol. 55, no. 11, pp. 867–892, 2006.
[24]  C. Chang, L. Zhang, J. Zhou, L. Zhang, and J. F. Kennedy, “Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions,” Carbohydrate Polymers, vol. 82, no. 1, pp. 122–127, 2010.
[25]  M. Pandey and M. C. I. M. Amin, “Accelerated preparation of novel bacterial cellulose/acrylamide-based hydrogel by microwave irradiation,” International Journal of Polymeric Materials, vol. 62, no. 7, pp. 402–405, 2013.
[26]  Y. Hagiwara, A. Putra, A. Kakugo, H. Furukawa, and J. P. Gong, “Ligament-like tough double-network hydrogel based on bacterial cellulose,” Cellulose, vol. 17, no. 1, pp. 93–101, 2010.
[27]  P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987.
[28]  C. ?zeroglu and A. Birdal, “Swelling properties of acrylamide-N,N′-methylene bis(acrylamide) hydrogels synthesized by using meso-2,3-dimercaptosuccinic acid-cerium(IV) redox couple,” Express Polymer Letters, vol. 3, no. 3, pp. 168–176, 2009.
[29]  Y. Song, J. Zhou, L. Zhang, and X. Wu, “Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions,” Carbohydrate Polymers, vol. 73, no. 1, pp. 18–25, 2008.
[30]  S. Ouajai and R. A. Shanks, “Composition, structure and thermal degradation of hemp cellulose after chemical treatments,” Polymer Degradation and Stability, vol. 89, no. 2, pp. 327–335, 2005.
[31]  H. Jin, C. Zha, and L. Gu, “Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution,” Carbohydrate Research, vol. 342, no. 6, pp. 851–858, 2007.
[32]  S. Kim, G. Iyer, A. Nadarajah, J. M. Frantz, and A. L. Spongberg, “Polyacrylamide hydrogel properties for horticultural applications,” International Journal of Polymer Analysis and Characterization, vol. 15, no. 5, pp. 307–318, 2010.
[33]  R. da Silva and M. G. de Oliveira, “Effect of the cross-linking degree on the morphology of poly(NIPAAm-co-AAc) hydrogels,” Polymer, vol. 48, no. 14, pp. 4114–4122, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413