全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

DOI: 10.1155/2013/175609

Full-Text   Cite this paper   Add to My Lib

Abstract:

The water-dispersed conductive polypyrrole (PPy) was prepared via the in situ oxidative chemical polymerization by using ammonium persulfate (APS) as oxidant and tunicate cellulose nanocrystals (T-CNs) as a dopant and template for tuning the morphologies of PPy nanoparticles. Highly flexible paper-like materials of PPy/T-CNs nanocomposites with high electrical conductivity values and good mechanical properties were prepared. The structure of nanocomposites of PPy/T-CNs was investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy analyses of the composites revealed that PPy consisted of nanoparticles about 2.5?nm in mean size to form a continuous coating covered on the T-CNs. The diameters of the PPy nanoparticles increased from 10 to 100?nm with the increasing pyrrole amount. Moreover, electrical properties of the obtained PPy/T-CNs films were studied using standard four-probe technique and the electrical conductivity could be as high as 10?3?S/cm. 1. Introduction The demand for new technologies that require high performance materials has driven materials research towards the development of novel functional nanoscaled materials with superior properties. Conducting polymers are a promising class of materials that possess unique properties that allow them to be used in a wide variety of applications [1]. The conductive properties of polyacetylene resulted in the 2000 Nobel Prize in chemistry and various analogues of it have been investigated throughout the years including polyphenylene, polyaniline, polythiophene, and polypyrrole [2]. PPy, one of the most prominent types of conjugated polymers, is a promising conducting polymer in electronics and biological and medical areas due to its straightforward polymerization, environmental stability, and high electrical conductivity that can be controlled by changing the doping degree [3]. But the poor processability and inadequate mechanical properties limit its commercial applications. In order to overcome these problems, several processing methods have been studied. The first approach toward PPy nanoparticles was reported by Bjorklund and Liedberg, who polymerized pyrrole in water in the presence of methyl cellulose. Particles of 100?nm to 200?nm size were observed in films spread from the reaction mixture [4]. Arms and Vincent prepared colloidally stable dispersions of PPy nanoparticles by aqueous dispersion polymerization in the presence of polyvinylpyrrolidone (PVP) or polyvinyl alcohol (PVA) as a stabilizer [5]. PPy spherical

References

[1]  A. Mihranyan, L. Nyholm, A. E. Garcia Bennett, and M. Str?mme, “A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose,” Journal of Physical Chemistry B, vol. 112, no. 39, pp. 12249–12255, 2008.
[2]  D. Müller, C. R. Rambo, C. R. Recouvreux, L. M. Porto, and G. M. O. Barra, “Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers,” Synthetic Metals, vol. 161, no. 1-2, pp. 106–111, 2011.
[3]  J. Pecher and S. Mecking, “Nanoparticles of conjugated polymers,” Chemical Reviews, vol. 110, no. 10, pp. 6260–6279, 2010.
[4]  R. B. Bjorklund and B. Liedberg, “Electrically conducting composites of colloidal polypyrrole and methylcellulose,” Journal of the Chemical Society, Chemical Communications, no. 16, pp. 1293–1295, 1986.
[5]  S. P. Arms and B. Vincent, “Dispersions of electrically conducting polypyrrole particles in aqueous media,” Journal of the Chemical Society, Chemical Communications, no. 4, pp. 288–290, 1987.
[6]  A. Y. Men'shikova, B. M. Shabsel's, and T. G. Evseeva, “Synthesis of polypyrrole nanoparticles by dispersion polymerization,” Journal of Applied Chemistry, vol. 76, no. 5, pp. 822–826.
[7]  J. Jang, J. H. Oh, and G. D. Stucky, “Fabrication of ultrafine conducting polymer and graphite nanoparticles,” Angewandte Chemie, vol. 41, no. 21, pp. 4016–4019, 2002.
[8]  X.-G. Li, Z.-Z. Hou, M.-R. Huang, and M. G. Moloney, “Efficient synthesis of intrinsically conducting polypyrrole nanoparticles containing hydroxy sulfoaniline as key self-stabilized units,” Journal of Physical Chemistry C, vol. 113, no. 52, pp. 21586–21595, 2009.
[9]  C. Sasso, N. Bruyant, D. Beneventi et al., “Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings,” Cellulose, vol. 18, no. 6, pp. 1455–1467, 2011.
[10]  D. W. Zhang, L. H. Zhang, B. Z. Wang, and G. Z. Piao, “Nanocomposites of polyaniline and cellulose nanocrystals prepared in lyotropic chiral nematic liquid crystals,” Journal of Materials, vol. 2013, Article ID 614507, 6 pages, 2013.
[11]  C. Sasso, E. Zeno, M. Petit-Conil et al., “Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties,” Macromolecular Materials and Engineering, vol. 295, no. 10, pp. 934–941, 2010.
[12]  L. Dall'Acqua, C. Tonin, R. Peila, F. Ferrero, and M. Catellani, “Performances and properties of intrinsic conductive cellulose-polypyrrole textiles,” Synthetic Metals, vol. 146, no. 2, pp. 213–221, 2004.
[13]  L. Dall'Acqua, C. Tonin, A. Varesano, M. Canetti, W. Porzio, and M. Catellani, “Vapour phase polymerisation of pyrrole on cellulose-based textile substrates,” Synthetic Metals, vol. 156, no. 5-6, pp. 379–386, 2006.
[14]  D. Beneventi, S. Alila, S. Boufi, D. Chaussy, and P. Nortier, “Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation—Pyrrole polymerization sequence,” Cellulose, vol. 13, no. 6, pp. 725–734, 2006.
[15]  J. Molina, A. I. del Río, J. Bonastre, and F. Cases, “Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA,” European Polymer Journal, vol. 45, no. 4, pp. 1302–1315, 2009.
[16]  I. Cucchi, A. Boschi, C. Arosio, F. Bertini, G. Freddi, and M. Catellani, “Bio-based conductive composites: preparation and properties of polypyrrole (PPy)-coated silk fabrics,” Synthetic Metals, vol. 159, no. 3-4, pp. 246–253, 2009.
[17]  A. Ru?ler, K. Sakakibara, and T. Rosenau, “Cellulose as matrix component of conducting films,” Cellulose, vol. 18, no. 4, pp. 937–944, 2011.
[18]  G. Nystr?m, A. Razaq, M. Str?mme, L. Nyholm, and A. Mihranyan, “Ultrafast all-polymer paper-based batteries,” Nano Letters, vol. 9, no. 10, pp. 3635–3639, 2009.
[19]  G. Nystr?m, A. Mihranyan, A. Razaq, T. Lindstr?m, L. Nyholm, and M. Str?mme, “A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood,” Journal of Physical Chemistry B, vol. 114, no. 12, pp. 4178–4182, 2010.
[20]  A. Mihranyan, “Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials,” Journal of Applied Polymer Science, vol. 119, no. 4, pp. 2449–2460, 2011.
[21]  A. Razaq, L. Nyholm, M. Str?mme, and A. Mihranyan, “Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes,” Advanced Energy Materials, vol. 2, no. 4, pp. 445–454, 2012.
[22]  M. Wu, S. Kuga, and Y. Huang, “Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils,” Langmuir, vol. 24, no. 18, pp. 10494–10497, 2008.
[23]  T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, and A. Isogai, “Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose,” Biomacromolecules, vol. 7, no. 6, pp. 1687–1691, 2006.
[24]  S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, and L. Heux, “Gas-phase surface esterification of cellulose microfibrils and whiskers,” Biomacromolecules, vol. 10, no. 8, pp. 2144–2151, 2009.
[25]  S. Kimura and T. Itoh, “Cellulose synthesizing terminal complexes in the ascidians,” Cellulose, vol. 11, pp. 377–383, 2004.
[26]  M. M. S. Lima and R. Borsali, “Static and dynamic light scattering from polyelectrolyte microcrystal cellulose,” Langmuir, vol. 18, no. 4, pp. 992–996, 2002.
[27]  D. Li, Z. Liu, M. Al-Haik et al., “Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite,” Polymer Bulletin, vol. 65, no. 6, pp. 635–642, 2010.
[28]  J. M. Dugan, J. E. Gough, and S. J. Eichhorn, “Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers,” Biomacromolecules, vol. 11, no. 9, pp. 2498–2504, 2010.
[29]  M. A. S. A. Samir, F. Alloin, and A. Dufresne, “Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field,” Biomacromolecules, vol. 6, no. 2, pp. 612–626, 2005.
[30]  J. Jang and H. O. Joon, “Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating,” Chemical Communications, no. 19, pp. 2200–2201, 2002.
[31]  F. F. Bruno, R. Nagarajan, S. Roy, J. Kumar, and L. A. Samuelson, “Biomimetic Synthesis of Water Soluble Conducting Polypyrrole and Poly(3,4-ehtylenedioxythiophene),” Journal of Macromolecular Science A, vol. 40, no. 12, pp. 1327–1333, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413