全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study on Morphology, Rheology, and Mechanical Properties of Poly(trimethylene terephthalate)/CaCO3 Nanocomposites

DOI: 10.1155/2013/890749

Full-Text   Cite this paper   Add to My Lib

Abstract:

For preparing good performance polymer materials, poly(trimethylene terephthalate)/CaCO3 nanocomposites were prepared and their morphology, rheological behavior, mechanical properties, heat distortion, and crystallization behaviors were investigated by transmission electron microscopy, capillary rheometer, universal testing machine, impact tester, heat distortion temperature tester, and differential scanning calorimetry (DSC), respectively. The results suggest that the nano-CaCO3 particles are dispersed uniformly in the polymer matrix. PTT/CaCO3 nanocomposites are pseudoplastic fluids, and the CaCO3 nanoparticles serve as a lubricant by decreasing the apparent viscosity of the nanocomposites; however, both the apparent viscosity and the pseudoplasticity of the nanocomposites increase with increasing CaCO3 contents. The nanoparticles also have nucleation effects on PTT’s crystallization by increasing the crystallization rate and temperature; however, excessive nanoparticles will depress this effect because of the agglomeration of the particles. The mechanical properties suggest that the CaCO3 nanoparticles have good effects on improving the impact strength and tensile strength with proper content of fillers. The nanofillers can greatly increase the heat distortion property of the nanocomposites. 1. Introduction Poly(trimethylene terephthalate) (PTT), as shown in Scheme 1, is a thermoplastic aromatic polyester. PTT offers several advantageous properties, including good tensile strength, resilience, outstanding elastic recovery, and dyeability, which makes it an ideal candidate for applications in textile fiber, carpet, and engineering plastic [1–4]. However, if it serves as an engineering plastic material, PTT still has some shortcomings, such as poor impact resistance at lower temperatures and low heat distortion temperature; thus, the modification of PTT with the other kind of polymers or fillers has been widely developed by researchers [5, 6]. Scheme 1: Molecular formula of PTT. Inorganic particulate nanofillers have been employed to improve the properties and/or lower costs of the polymer products. Generally, nanosized fillers are superior to their micron-sized counterparts in improving the mechanical and thermal properties of thermoplastics because of their larger interfacial area between the particles and the surrounding polymer matrix [7–9]. Various nanoinorganic particles, such as TiO2 [10, 11], calcium carbonate (CaCO3) [12–18], SiO2 [19, 20], and clay [21–25], are usually used as fillers in the organic/inorganic composites. CaCO3 has been one of

References

[1]  J.-M. Huang, M.-Y. Ju, P. P. Chu, and F.-C. Chang, “Crystallization and melting behaviors of poly(trimethylene terephthalate),” Journal of Polymer Research, vol. 6, no. 4, pp. 259–266, 1999.
[2]  J. L. Zhang, “Study of poly(trimethylene terephthalate) as an engineering thermoplastics material,” Journal of Applied Polymer Science, vol. 91, no. 3, pp. 1657–1666, 2004.
[3]  J.B. Bernard, L. Menachem, and K. Jongsoo, “Crystallization kinetics of poly(propylene terephthalate) studied by rapid-scanning Raman spectroscopy and FT-IR spectroscopy,” Macromolecules, vol. 20, no. 4, pp. 830–835, 1987.
[4]  N. Apiwanthanakorn, P. Supaphol, and M. Nithitanakul, “Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate),” Polymer Testing, vol. 23, no. 7, pp. 817–826, 2004.
[5]  D. R. Paul and C. B. Bucknall, Polymer Blends, Wiley-Interscience, 2000.
[6]  L. A. Utracki, Polymer Blends Handbook, Kluwer Academic, Dodrecht, The Netherlands, 2003.
[7]  P. B. Messersmith and E. P. Giannelis, “Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites,” Journal of Polymer Science A, vol. 33, no. 7, pp. 1047–1057, 1995.
[8]  K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, “Synthesis and cationic photopolymerization of alkoxyallene monomers,” Journal of Polymer Science A, vol. 31, no. 14, pp. 2493–2504, 1993.
[9]  E. Butta, G. Levita, A. Marchetti, and A. Lazzeri, “Morphology and mechanical properties of amine-terminated butadiene-acrylonitrile/epoxy blend,” Polymer Engineering and Science, vol. 26, no. 1, pp. 63–73, 1986.
[10]  Z. Wang, G. Li, G. Xie, and Z. Zhang, “Dispersion behavior of TiO2 nanoparticles in LLDPE/LDPE/TiO2 nanocomposites,” Macromolecular Chemistry and Physics, vol. 206, no. 2, pp. 258–262, 2005.
[11]  Y. Liu, J. Y. Lee, and L. Hong, “Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes,” Journal of Applied Polymer Science, vol. 89, no. 10, pp. 2815–2822, 2003.
[12]  M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, “Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites,” Polymer, vol. 42, no. 1, pp. 167–183, 2001.
[13]  A. Lazzeri, S. M. Zebarjad, M. Pracella, K. Cavalier, and R. Rosa, “Filler toughening of plastics. Part 1: the effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites,” Polymer, vol. 46, no. 3, pp. 827–844, 2005.
[14]  X.-L. Xie, Q.-X. Liu, R. K.-Y. Li et al., “Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization,” Polymer, vol. 45, no. 19, pp. 6665–6673, 2004.
[15]  Y. Tang, Y. Hu, R. Zhang et al., “Investigation into poly(propylene)/montmorillonite/calcium carbonate nanocomposites,” Macromolecular Materials and Engineering, vol. 289, no. 2, pp. 191–197, 2004.
[16]  Q.-X. Zhang, Z.-Z. Yu, X.-L. Xie, and Y.-W. Mai, “Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier,” Polymer, vol. 45, no. 17, pp. 5985–5994, 2004.
[17]  D. Wu, X. Wang, Y. Song, and R. Jin, “Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles: effects of chlorinated polyethylene on mechanical properties, morphology, and rheology,” Journal of Applied Polymer Science, vol. 92, no. 4, pp. 2714–2723, 2004.
[18]  M. Run, C. Yao, Y. Wang, and J. Gao, “Isothermal crystallization kinetics and melting behaviors of nanocomposites of poly(trimethylene terephthalate) filled with nano-CaCO3,” Journal of Applied Polymer Science, vol. 106, no. 3, pp. 1557–1567, 2007.
[19]  R. Petrovicova, R. Knight, L. S. Schadler, and T. E. Twadow-ski, “Nylon11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties,” Journal of Applied Polymer Science, vol. 78, no. 13, pp. 2272–2289, 2000.
[20]  N. Hasegawa, H. Okamoto, M. Kato, and A. Usaki, “Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay,” Journal of Applied Polymer Science, vol. 78, no. 11, pp. 1918–1922, 2000.
[21]  C.-S. Wu, “Synthesis of polyethylene-octene elastomer/SiO2-TiO2 nanocomposites via in situ polymerization: Properties and characterization of the hybrid,” Journal of Polymer Science A, vol. 43, no. 8, pp. 1690–1701, 2005.
[22]  J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie, and W. P. Pan, “The characterization of organic modified clay and clay-filled PMMA nanocomposite,” Journal of Applied Polymer Science, vol. 83, no. 8, pp. 1702–1710, 2002.
[23]  X. Hu and A. J. Lesser, “Effect of a silicate filler on the crystal morphology of poly(trimethylene terephthalate)/clay nanocomposites,” Journal of Polymer Science B, vol. 41, no. 19, pp. 2275–2289, 2003.
[24]  C.-F. Ou, “Crystallization behavior and thermal stability of poly(trimethylene terephthalate)/clay nanocomposites,” Journal of Polymer Science B, vol. 41, no. 22, pp. 2902–2910, 2003.
[25]  X. Hu and A. J. Lesser, “Non-isothermal crystallization of poly(trimethylene terephthalate) (PTT)/clay nanocomposites,” Macromolecular Chemistry and Physics, vol. 205, no. 5, pp. 574–580, 2004.
[26]  M. Guessoum, S. Nekkaa, F. Fenouillot-Rimlinger, and N. Haddaoui, “Effects of Kaolin surface treatments on the thermomechanical properties and on the degradation of polypropylene,” International Journal of Polymer Science, vol. 2012, Article ID 549154, 9 pages, 2012.
[27]  J. González, C. Albano, M. Ichazo, and B. Díaz, “Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3,” European Polymer Journal, vol. 38, no. 12, pp. 2465–2475, 2002.
[28]  E. Tamaki, A. Hibara, H.-B. Kim, M. Tokeshi, and T. Kitamori, “Pressure-driven flow control system for nanofluidic chemical process,” Journal of Chromatography A, vol. 1137, no. 2, pp. 256–262, 2006.
[29]  X.-Y. Chen, G. Wang, W.-Y. Fan, and R. Huang, “Study on unusual rheological behavior of polyolefin/nano CaCO3 composites,” China Plastics, vol. 17, no. 5, pp. 57–63, 2003.
[30]  D. H. Hang, Rheology in Polymer Processing, New York Academic Press, New York, NY, USA, 1976.
[31]  S. Poulin-Dandurand, S. Pérez, J.-F. Revol, and F. Brisse, “The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction,” Polymer, vol. 20, no. 4, pp. 419–426, 1979.
[32]  J. A. Brydson, Flow Properties of Polymer Melts, Van Nostrand Reinhold, New York, NY, USA, l970.
[33]  X. F. Lu and J. N. Hay, “Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate),” Polymer, vol. 42, no. 23, pp. 9423–9431, 2001.
[34]  Y. Kong and J. N. Hay, “Multiple melting behaviour of poly(ethylene terephthalate),” Polymer, vol. 44, no. 3, pp. 623–633, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413