Conducting polymer composites of polyaniline/vanadium pentaoxide PANI/V2O5 (with different initial weight percentage of V2O5) has been synthesized by in situ polymerization method. DC conductivity of compressed pellets has been analyzed in the temperature range 300–550?K and was found to increase with V2O5 doping. This increase in conductivity is mainly due to band conduction. It has also been observed that the dielectric constant and dielectric loss increase with the level of doping of V2O5 but remain independent of the frequency (50?KHz–1?MHz). X-ray diffraction pattern shows some order of crystallinity of composites due to interaction of polyaniline with V2O5. UV-visible spectroscopy shows an increase in the optical band gap with doping. 1. Introduction The conducting polymers have emerged as a new class of materials because of their unique electrical, optical, and chemical properties. By proper doping the conductivity of these materials can be varied from semiconducting to metallic regime, which offers new concept of charge transport mechanism. Among different conducting polymers, conductive polyaniline (PANI) has been studied extensively because of its ease of synthesis in aqueous media, its environmental stability, special electrical, and other properties. PANI and its derivatives have received much attention because of their various technological applications, reversible proton doping, high electrical conductivity, and ease of bulk synthesis. PANI is also a suitable candidate for a variety of technological applications such as solar cells, electromagnetic shielding, electrodes for rechargeable batteries, and sensors [1–11]. Many authors have studied the progress of chemical polymerization and doping of aniline and its derivatives. The effort was to correlate mechanisms of oxidation of anilines and properties of PANI such as electrical conductivity, molecular weight, and crystallinity. However, when they were taken in the composite form, their electrical as well as dielectric properties alter from those of basic materials. A number of groups had reported on the electrical conductivity and dielectric properties of composites of a variety of conducting polymers [12–15]. Recently heterogeneous conducting polymer composites, especially organic-inorganic composites, became the subject of extensive study. Among the base materials used, polyaniline (PANI) is one of the most extensively studied conducting polymer. Ever since its discovery in a pioneering work by Mc Diarmid et al. [16–21]. The DC conductivity of a conjugated polymer depends on the doping
References
[1]
J. Aguilar-Hernández and K. Potje-Kamloth, “Evaluation of the electrical conductivity of polypyrrole polymer composites,” Journal of Physics D: Applied Physics, vol. 34, no. 11, pp. 1700–1711, 2001.
[2]
A. Dey, A. De, and S. K. De, “Electrical transport and dielectric relaxation in Fe3O4-polypyrrole hybrid nanocomposites,” Journal of Physics Condensed Matter, vol. 17, no. 37, pp. 5895–5910, 2005.
[3]
C. J. Mathai, S. Saravanan, M. R. Anantharaman, S. Venkitachalam, and S. Jayalekshmi, “Characterization of low dielectric constant polyaniline thin film synthesized by ac plasma polymerization technique,” Journal of Physics D: Applied Physics, vol. 35, no. 3, pp. 240–245, 2002.
[4]
T. K. Vishnuvardhan, V. R. Kulkarni, C. Basavaraja, and S. C. Raghavendra, “Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites,” Bulletin of Materials Science, vol. 29, no. 1, pp. 77–83, 2006.
[5]
W. Chen, L. Xingwei, X. Gi, W. Zhaoquang, and Z. Wenquing, “Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres,” Applied Surface Science, vol. 218, no. 1–4, pp. 216–222, 2003.
[6]
S. D. Patil, S. C. Raghavendra, M. Revansiddappa, P. Narsimha, and M. V. N. A. Prasad, “Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites,” Bulletin of Materials Science, vol. 30, no. 2, pp. 89–92, 2007.
[7]
C. Li and G. Shi, “Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene,” Electrochimica Acta, vol. 56, no. 28, pp. 10737–10747, 2011.
[8]
Y. Chen, C. Xu, and Y. Wang, “Viscoelasticity behaviors of lightly cured natural rubber/zinc dimethacrylate composites,” Polymer Composites, vol. 33, pp. 1206–1214, 2012.
[9]
T. Matsunaga, H. Daifuku, T. Nakajima, and T. Gawa-goe, “Development of polyaniline-lithium secondary battery,” Polymers for Advanced Technologies, vol. 1, no. 1, pp. 33–39, 1990.
[10]
G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, vol. 357, no. 6378, pp. 477–479, 1992.
[11]
A. Olcani, M. Abe, M. Ezoe, T. Doi, T. Miyata, and A. Miyake, “Synthesis and properties of high-molecular-weight soluble polyaniline and its application to the 4MB-capacity barium ferrite floppy disk's antistatic coating,” Synthetic Metals, vol. 57, p. 3969, 1993.
[12]
J. Yang, J. Hou, W. Zhu, M. Xu, and M. Wan, “Substituted polyaniline-polypropylene film composites: preparation and properties,” Synthetic Metals, vol. 80, no. 3, pp. 283–289, 1996.
[13]
C. O. Yoon, M. Reghu, D. Moses, Y. Cao, and A. J. Heeger, “Transports in blends of conducting polymers,” Synthetic Metals, vol. 69, no. 1-3, pp. 255–258, 1995.
[14]
R. Murugesan and E. Subramanian, “Charge dynamics in conducting polyaniline-metal oxalate composites,” Bulletin of Materials Science, vol. 26, no. 6, pp. 529–535, 2003.
[15]
C. Brosseau, P. Queffelec, and P. Talbot, “Microwave characterization of filled polymers,” Journal of Applied Physics, vol. 89, no. 8, article 4532, 2001.
[16]
A. G. Mac Diarmid, J. C. Chiang, M. Halpern et al., ““Polyaniline”: interconversion of metallic and insulating forms,” Molecular Crystals and Liquid Crystals, vol. 121, no. 1–4, pp. 173–180, 1985.
[17]
S. P. Armes and J. F. Miller, “Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate,” Synthetic Metals, vol. 22, no. 4, pp. 385–393, 1988.
[18]
M. L. Gautu and P. J. G. Romero, “Synthesis and characterization of intercalate phases in the organic-inorganic polyaniline/V2O5 system,” Journal of Solid State Chemistry, vol. 147, no. 2, pp. 601–608, 1999.
[19]
W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis, and A. Siegmann, “Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization,” Synthetic Metals, vol. 128, no. 1, pp. 115–120, 2002.
[20]
S. J. Su and N. Kuramoto, “Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity,” Synthetic Metals, vol. 114, no. 2, pp. 147–153, 2000.
[21]
S. Wang, Z. Tan, Y. Li, L. Sun, and T. Zhang, “Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites,” Thermochimica Acta, vol. 441, no. 2, pp. 191–194, 2006.
[22]
M. A. M. Khan, M. Zulfequar, A. Kumar, and M. Husain, “Conduction mechanism in amorphous Se75In25-xPb x films,” Materials Chemistry and Physics, vol. 87, no. 1, pp. 179–183, 2004.
[23]
G. T. Kim, J. Muster, V. Krstic et al., “Field-effect transistor made of individual V2O5 nanofibers,” Applied Physics Letters, vol. 76, no. 14, pp. 1875–1877, 2000.
[24]
Q. H. Wu, A. Thissen, W. Jaegermann, and M. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Applied Surface Science, vol. 236, no. 1–4, pp. 473–478, 2004.
[25]
C. V. Ramana, R. J. Smith, O. M. Hussain, C. C. Chusuei, and C. M. Julien, “Correlation between growth conditions, microstructure, and optical properties in pulsed-laser-deposited V2O5 thin films,” Chemistry of Materials, vol. 17, no. 5, pp. 1213–1219, 2005.
[26]
G. B. V. S. Lakshmi, V. Ali, A. M. Siddiqui, P. K. Kulriya, and M. Zulfequar, “Optical studies of SHI Irradiated poly(o-toluidine)-PVC blends,” The European Physical Journal—Applied Physics, vol. 39, no. 3, pp. 251–255, 2007.
[27]
Z. H. Khani, M. M. Malik, M. Zulfequar, and M. Husain, “Electrical conduction mechanism in a-Se80-xTexGa20 films (0
[28]
P. M. Grant and I. P. Batra, “Band structure of polyacetylene, (CH)x,” Solid State Communications, vol. 29, no. 3, pp. 225–229, 1979.
[29]
J. Fink and G. Leising, “Momentum-dependent dielectric functions of oriented trans-polyacetylene,” Physical Review B, vol. 34, no. 8, pp. 5320–5328, 1986.
[30]
P. Dutta, S. Biswas, M. Ghosh, S. K. De, and S. Chatterjee, “The dc and ac conductivity of polyaniline-polyvinyl alcohol blends,” Synthetic Metals, vol. 122, no. 2, pp. 455–461, 2001.
[31]
S. De, A. Dey, and S. K. Dea, “Charge transport mechanism of vanadium pentoxide xerogel-polyaniline nanocomposite,” The European Physical Journal, vol. 46, pp. 355–361, 2005.
[32]
A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, “Solitons in conducting polymers,” Reviews of Modern Physics, vol. 60, no. 3, pp. 781–850, 1988.
[33]
A. Dey, A. De, and S. K. De, “Electrical transport and dielectric relaxation in Fe3O4-polypyrrole hybrid nanocomposites,” Journal of Physics Condensed Matter, vol. 17, no. 37, pp. 5895–5910, 2005.
[34]
N. N. Mallikarjuna, S. K. Manohar, P. V. Kulkarni, A. Venkataraman, and T. M. Aminabhavi, “Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles,” Journal of Applied Polymer Science, vol. 97, no. 5, pp. 1868–1874, 2005.
[35]
R. Singh, R. P. Tandon, V. S. Panwar, and S. Chandra, “Low-frequency ac conduction in lightly doped polypyrrole films,” Journal of Applied Physics, vol. 69, no. 4, pp. 2504–2511, 1991.
[36]
N. Musahwar, M. A. Majeed Khan, M. Husain, and M. Zulfequar, “Dielectric and electrical properties of Se-S glassy alloys,” Physica B: Condensed Matter, vol. 396, no. 1-2, pp. 81–86, 2007.
[37]
S. R. Elliott, “A theory of a.c. conduction in chalcogenide glasses,” Philosophical Magazine, vol. 36, no. 6, pp. 1291–1304, 1977.
[38]
S. R. Elliott, “Temperature dependence of a.c. conductivity of chalcogenide glasses,” Philosophical Magazine B, vol. 37, pp. 553–560, 1978.
[39]
J. C. Giuntini, J. V. Zanchetta, D. Jullien, R. Eholie, and P. Houenou, “Temperature dependence of dielectric losses in chalcogenide glasses,” Journal of Non-Crystalline Solids, vol. 45, no. 1, pp. 57–62, 1981.
[40]
W. K. Lee, J. F. Liu, and A. S. Nowick, “Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality,” Physical Review Letters, vol. 67, no. 12, pp. 1559–1561, 1991.
[41]
H. K. Chaudhari and D. S. Kekler, “X-ray diffraction study of doped polyaniline,” Journal of Applied Polymer Science, vol. 62, no. 1, pp. 15–18, 1996.
[42]
B. P. Barbero and L. E. Cadus, “V2O5-SmVO4 mechanical mixture: oxidative dehydrogenation of propane,” Applied Catalysis A: General, vol. 237, no. 1-2, pp. 263–273, 2002.
[43]
J. I. Pankove, Optical processes in Semiconductors, Prentice-Hall, Englewood Cliffs, NJ, USA, 1971.
[44]
A. Abdel-Aal, “Dielectric relaxation in CdxInSe9-x chalcogenide thin films,” Egyptian Journal of Solids, vol. 29, p. 293, 2006.
[45]
G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks, “Optical characterization of amorphous silicon hydride films,” Solar Cells, vol. 2, no. 3, pp. 227–243, 1980.
[46]
J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, NewYork, NY, USA, 1974.
[47]
E. Marquez, J. Ramirez-Malo, P. Villares, R. Jimenez-Garay, P. J. S. Ewen, and A. E. Owen, “Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra,” Journal of Physics D: Applied Physics, vol. 25, no. 3, pp. 535–541, 1992.
[48]
N. F. Mott and E. A. Davis, Electronics Processes in Non-Crystalline Materials, Clarendon, Oxford, UK, 1979.