Different polyesteramides hyperbranched polymers (HPEA1-6)/montomorillonite clay (MMT) nanocomposites were prepared with three different loading contents of clay (4, 10, and 15?wt%). The obtained nanocomposites were characterized via XRD, thermal analyses, and TEM. Generally, intercalation behavior was observed. The hyperbranched polyesteramides (HPEA1-6) were originally prepared by the bulky reaction between maleic anhydride (MAn), succinic anhydride (ScAn), and phthalic anhydride (PhAn) with either diethanolamine (DEA) or diisopropanolamine (DiPA). The resulting hyperbranched polyesteramides (HPEA1-6) were characterized by GPC, IR, 1H-NMR, TGA, and DSC. 1. Introduction Recently, polymer/clay nanocomposites have been considered as rising area of research from both scientific and industrial perspectives where they result from the interaction between the organic polymer phase and the inorganic clay phase. Therefore, polymer/clay nanocomposites combine both the properties of inorganic phase such as rigidity, high stability, and the properties of organic phase such as flexibility, dielectric, ductility, and processability [1–4]. Layered silicates such as montmorillonite are the most versatile member of the nanofillers used in manufacturing polymer/clay nanocomposites. The nanoparticles improve the polymer performance over conventional fillers with a smaller loading content [5]. The advantages of nanocomposites include enhanced mechanical properties such as elastic modulus [6] and tensile strength [7, 8]. Additional enhancements are expected in coefficient of linear thermal expansion, heat distortion temperature, flammability resistance, ablation performance, gas barrier properties, and others [9–12]. Generally, polymer/clay nanocomposites have been widely used in many fields, such as automobile and tire industries, construction fields, food packaging, electrical fields, antimicrobial agents, and other potential applications [13–17]. Several polymers are involved in producing such nanocomposites as vinyl polymers [18, 19], condensation polymers [20, 21], polyolefins [22, 23], and others [24, 25]. Hyperbranched polymers have been lately used in such nanocomposites due to their brilliant physical and chemical properties to obtain nanocomposites with excellent properties that can be invested in different applications [26, 27]. Hyperbranched polymers belong to the dendritic polymers; however, they are prepared via several easy preparative methods in one-pot reaction which is considered as merit over the dendrimers themselves especially in the industry where
References
[1]
A. Chafidz, I. Ali, M. E. A. Mohsin, R. Elleithy, and S. Al-Zahrani, “Nanoindentation and dynamic mechanical properties of PP/clay nanocomposites,” Journal of Polymer Research, vol. 19, article 9906, 2012.
[2]
N. Greesh, P. C. Hartmann, and R. D. Sanderson, “The effect of clay loading on the morphology and properties of poly(styrene-co-butyl acrylate)/clay nanocomposites,” Macromolecular Materials and Engineering, vol. 294, no. 3, pp. 206–212, 2009.
[3]
N. Bitinis, M. Hernandez, R. Verdejo, J. M. Kenny, and M. A. Lopez-Manchado, “Recent advances in clay/polymer nanocomposites,” Advanced Materials, vol. 23, no. 44, pp. 5229–5236, 2011.
[4]
S. K. Nayak and S. Mohanty, “Dynamic mechanical, rheological, and thermal properties of intercalated polystyrene/organomontmorillonite nanocomposites: effect of clay modification on the mechanical and morphological behaviors,” Journal of Applied Polymer Science, vol. 112, no. 2, pp. 778–787, 2009.
[5]
A. Akbari, S. Talebanfard, and A. Hassan, “The effect of the structure of clay and clay modifier on polystyrene-clay nanocomposite morphology: a review,” Polymer—Plastics Technology and Engineering, vol. 49, no. 14, pp. 1433–1444, 2010.
[6]
E. Pavlacky, N. Ravindran, and D. C. Webster, “Novel in situ synthesis in the preparation of ultraviolet-curable nanocomposite barrier coatings,” Journal of Applied Polymer Science, vol. 125, pp. 3836–3848, 2012.
[7]
M. Ataeefard and S. Moradian, “Polypropylene/organoclay nanocomposites: effects of clay content on properties,” Polymer—Plastics Technology and Engineering, vol. 50, no. 7, pp. 732–739, 2011.
[8]
P. Kiliaris and C. D. Papaspyrides, “Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy,” Progress in Polymer Science, vol. 35, no. 7, pp. 902–958, 2010.
[9]
I.-K. Yang and P.-H. Tsai, “Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nanocomposites: effect of surfactant,” Polymer, vol. 47, no. 14, pp. 5131–5140, 2006.
[10]
R. Wilson, T. S. Plivelic, A. S. Aprem, C. Ranganathaiagh, S. A. Kumar, and S. Thomas, “Preparation and characterization of EVA/clay nanocomposites with improved barrier performance,” Journal of Applied Polymer Science, vol. 123, no. 6, pp. 3806–3818, 2012.
[11]
Y. Turhan, M. Dogan, and M. Alkan, “Characterization and some properties of poly(vinyl chloride)/sepiolite nanocomposites,” Advances in Polymer Technology, vol. 32, supplement 1, pp. E65–E82, 2013.
[12]
S. Akhlaghi, M. Kalaee, E. Jowdar et al., “Simultaneous study of cure kinetics and rheology of montmorillonite/vinyl ester resin nanocomposites,” Polymers for Advanced Technologies, vol. 23, no. 3, pp. 534–544, 2012.
[13]
C. Shan, Z. Gu, L. Wang et al., “Preparation, characterization, and application of NR/SBR/organoclay nanocomposites in the tire industry,” Journal of Applied Polymer Science, vol. 119, no. 2, pp. 1185–1194, 2011.
[14]
T. V. Duncan, “Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors,” Journal of Colloid and Interface Science, vol. 363, no. 1, pp. 1–24, 2011.
[15]
R. Nigmatullin, F. Gao, and V. Konovalova, “Polymer-layered silicate nanocomposites in the design of antimicrobial materials,” Journal of Materials Science, vol. 43, no. 17, pp. 5728–5733, 2008.
[16]
N. Ghaemi, S. S. Madaeni, A. Alizadeh, H. Rajabi, and P. Daraei, “Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides,” Journal of Membrane Science, vol. 382, no. 1-2, pp. 135–147, 2011.
[17]
M. G. Hosseini, M. Jafari, and R. Najjar, “Effect of polyaniline-montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000,” Surface and Coatings Technology, vol. 206, no. 2-3, pp. 280–286, 2011.
[18]
A. A. Sapalidis, F. K. Katsaros, T. A. Steriotis, and N. K. Kanellopoulos, “Properties of poly(vinyl alcohol)—bentonite clay nanocomposite films in relation to polymer-clay interactions,” Journal of Applied Polymer Science, vol. 123, no. 3, pp. 1812–1821, 2012.
[19]
Y. Xu, Q. Chen, W. Bai, and J. Lin, “Preparation and properties of raw lacquer/multihydroxyl polyacrylate/organophilic montmorillonite nanocomposites,” Polymer Bulletin, vol. 68, no. 4, pp. 983–992, 2012.
[20]
S. P. Vasilakos and P. A. Tarantili, “Mechanical properties and nanostructure correlation of condensation-type poly(dimethyl siloxane)/layered silicate hybrids,” Journal of Applied Polymer Science, vol. 125, no. 1, pp. E548–E560, 2012.
[21]
X. Xia, J. Yih, N. A. D'Souza, and Z. Hu, “Swelling and mechanical behavior of poly (N-isopropylacrylamide)/Na-montmorillonite layered silicates composite gels,” Polymer, vol. 44, no. 11, pp. 3389–3393, 2003.
[22]
K. Chrissopoulou and S. H. Anastasiadis, “Polyolefin/layered silicate nanocomposites with functional compatibilizers,” European Polymer Journal, vol. 47, no. 4, pp. 600–613, 2011.
[23]
A. Sharif-Pakdaman, J. Morshedian, and Y. Jahani, “Influence of the silane grafting of polyethylene on the morphology, barrier, thermal, and rheological properties of high-density polyethylene/organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 125, no. 1, pp. E305–E313, 2012.
[24]
I. Larraza, C. Peinado, C. Abrusci, F. Catalina, and T. Corrales, “Hyperbranched polymers as clay surface modifiers for UV-cured nanocomposites with antimicrobial activity,” Journal of Photochemistry and Photobiology A, vol. 224, no. 1, pp. 46–54, 2011.
[25]
H. Salehi-Mobarakeh, A. Yadegari, F. Khakzad-Esfahlan, and A. Mahdavian, “Modifying montmorillonite clay via silane grafting and interfacial polycondensation for melt compounding of nylon-66 nanocomposite,” Journal of Applied Polymer Science, vol. 124, no. 2, pp. 1501–1510, 2012.
[26]
C. J. G. Plummer, L. Garamszegi, Y. Leterrier, M. Rodlert, and J.-A. E. M?nson, “Hyperbranched polymer layered silicate nanocomposites,” Chemistry of Materials, vol. 14, no. 2, pp. 486–488, 2002.
[27]
A. Amin, A. S. Taha, and M. A. A. Abd El-Ghaffar, “Aliphatic polyamidoamine hyperbranched polymers/layered silicate nanocomposites,” Journal of Applied Polymer Science, vol. 118, no. 1, pp. 525–537, 2010.
[28]
D. Muscat and R. A. T. M. van Benthem, “Hyperbranched polyesteramides—new dendritic polymers,” Topics in Current Chemistry, vol. 212, pp. 41–80, 2001.
[29]
P. Froehling, “Development of DSM's hybrane hyperbranched polyesteramides,” Journal of Polymer Science Part A, vol. 42, no. 13, pp. 3110–3115, 2004.
[30]
R. van Benthem, J. Rietberg, and D. Stanssens, “Condensation polymer containing hydroxyalkylamide groups,” European Patent, 1036106B1, September 2000.
[31]
M. Nahmany and A. Melman, “Chemoselectivity in reactions of esterification,” Organic and Biomolecular Chemistry, vol. 2, no. 11, pp. 1563–1572, 2004.
[32]
S. M. Burkinshaw, P. E. Froehling, and M. Mignanelli, “The effect of hyperbranched polymers on the dyeing of polypropylene fibres,” Dyes and Pigments, vol. 53, no. 3, pp. 229–235, 2002.
[33]
R. A. T. M. van Benthem, N. Meijerink, E. Geladé et al., “Synthesis and characterization of bis(2-hydroxypropyl)amide-based hyperbranched polyesteramides,” Macromolecules, vol. 34, no. 11, pp. 3559–3566, 2001.
[34]
A. Amin, H. H. M. Darweesh, A. M. Ramadan, S. M. M. Morsi, and M. M. H. Ayoub, “Employing of some hyperbranched polyesteramides as new polymeric admixtures for cement,” Journal of Applied Polymer Science, vol. 121, no. 1, pp. 309–320, 2011.
[35]
A. Amin, H. H. M. Darweesh, S. M. M. Morsi, and M. M. H. Ayoub, “Effect of phthalic anhydride-based hyperbranched polyesteramide on cement characteristics,” Journal of Applied Polymer Science, vol. 120, no. 5, pp. 3054–3064, 2011.
[36]
A. Amin, H. M. Darweesh, A. M. Ramadan, S. M. M. Morsi, and M. M. H. Ayoub, “Modification of cement with succinic anhydride-based hyperbranched polyesteramide,” Journal of Applied Polymer Science, vol. 124, no. 2, pp. 1483–1489, 2012.