全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fourier Transform Infrared Spectral Analysis of Polyisoprene of a Different Microstructure

DOI: 10.1155/2013/937284

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some polyisoprene samples of different microstructure contents were studied by Fourier transform infrared (FTIR) and 1H Nuclear magnetic resonance (1H NMR). On the basis of detailed analysis of FTIR spectra of polyisoprene, the shift of absorption peaks caused by microstructure content’s variation was discussed. The contents of the polyisoprene samples’ microstructure which was determined by the 1H NMR was used as the standard. Through the choice, calculation, and comparison with the corresponding absorption peaks of FTIR, a method based on the results of the analysis has been developed for the determination of the microstructure contents of polyisoprene by FTIR. 1. Introduction As it is well known, polyisoprene (PIp) is one kind of important rubbers, and there are four kinds of microstructure in its molecular chain which are cis-1,4-, trans-1,4-, 1,2-, and 3,4-polyisoprene. The main ingredient of nature rubber is cis-1,4- or trans-1,4-polyisoprene. For example, Hevea brasiliensis (the Brazilian rubber tree) is polyisoprene with more than 5,000 cis-1,4-repeat units except for the transinitiator residue of repeat units ranging from 1 to 4, depending on the plant species. Gutta-percha, Balata, or Malaysian rubber is polyisoprene with trans-1,4-repeat units [1–4]. Since English chemist Michael Faraday found that the structure unit of nature rubber was C5H8, the research of synthetic polyisoprene keeps active [1–7]. Except for the synthesis of high content of cis-1,4- or trans-1,4-polyisoprene to imitate and replace nature rubber, the research on synthesis of polyisoprene with variable microstructure contents keeps attractive in order to obtain some materials of special properties. For example, with 3,4- unit content’s increasing, the curing rate and low temperature properties of polyisoprene decrease, but hardness and elasticity increase, as well as tensile properties, tension set, and tearing strength maintain are slightly changed. Particularly, the water resistance and hermeticity of polyisoprene with high 3,4-unit content can compare with butyl rubber [8–11]. The application of polyisoprene with high 3,4-unit content in tread can improve the skidding resistance, traction property, and cutting growing resistance and also can decrease the generation of heat by friction So it is the new varieties of rubber for a fuel-saving, environmental protection and safety tire. Most of the studies on microstructure of polymers are characterized by nuclear magnetic resonance (NMR) spectrophotometer and FTIR [12, 13]. The first extensive IR spectroscopic studies of

References

[1]  J. E. Puskas, F. Peruch, A. Deffieux et al., “Biomimetic carbocationic polymerizations III: Investigation of isoprene polymerization initiated by dimethyl allyl bromide,” Journal of Polymer Science Part A, vol. 47, no. 8, pp. 2172–2180, 2009.
[2]  J. E. Puskas, C. Peres, F. Peruch et al., “Biomimetic processes. IV. carbocationic polymerization of isoprene initiated by dimethyl allyl alcohol,” Journal of Polymer Science Part A, vol. 47, no. 8, pp. 2181–2189, 2009.
[3]  A. Avgeropoulos, S. Paraskeva, N. Hadjichristidis, and E. L. Thomas, “Synthesis and microphase separation of linear triblock terpolymers of polystyrene, high 1,4-polybutadiene, and high 3,4-polyisoprene,” Macromolecules, vol. 35, no. 10, pp. 4030–4035, 2002.
[4]  B. Wang, D. Wang, D. Cui et al., “Synthesis of the first rare earth metal bis(alkyl)s bearing an indenyl functionalized N-heterocyclic carbene,” Organometallics, vol. 26, no. 13, pp. 3167–3172, 2007.
[5]  G. Ricci, M. Battistella, and L. Porri, “Chemoselectivity and stereospecificity of chromium(II) catalysts for 1,3-diene polymerization,” Macromolecules, vol. 34, no. 17, pp. 5766–5769, 2001.
[6]  G. Ricci, D. Morganti, A. Sommazzi, R. Santi, and F. Masi, “Polymerization of 1,3-dienes with iron complexes based catalysts influence of the ligand on catalyst activity and stereospecificity,” Journal of Molecular Catalysis A, vol. 204-205, pp. 287–293, 2003.
[7]  C. Bazzini, A. Giarrusso, L. Porri, B. Pirozzi, and R. Napolitano, “Synthesis and characterization of syndiotactic 3,4-polyisoprene prepared with diethylbis(2,2′-bipyridine)iron-MAO,” Polymer, vol. 45, no. 9, pp. 2871–2875, 2004.
[8]  T. Yu, B. Huang, W. Yao, et al., “Research and development of 3,4-polyisoprene rubber,” China Synthetic Rubber Industry, vol. 27, no. 2, pp. 122–126, 2004.
[9]  W. Zhang, B. Huang, A. Du, et al., “Properties of TPI/HVBR/NR blends,” China Rubber Industry, vol. 49, no. 1, pp. 5–8, 2002.
[10]  W. Zhang, B. Huang, A. Du, et al., “Properties of TPI/HVBR/SBR blends,” China Rubber Industry, vol. 49, no. 2, pp. 69–72, 2002.
[11]  Z. Zhao, “The applied technology and properties of polyisoprene of high 3,4-isomer content,” China Rubber Collection of Translations, no. 2, pp. 66–69, 1996.
[12]  B. Huang, W. Zhang, A. Du, et al., “Application of TPI/HVBR blend to tread,” China Rubber Industry, vol. 49, no. 3, pp. 133–137, 2002.
[13]  D. Derouet, S. Forgeard, J.-C. Brosse, J. Emery, and J.-Y. Buzare, “Application of solid-state NMR (13C and29Si CP/MAS NMR) spectroscopy to the characterization of alkenyltrialkoxysilane and trialkoxysilyl-terminated polyisoprene grafting onto silica microparticles,” Journal of Polymer Science Part A, vol. 36, no. 3, pp. 437–453, 1998.
[14]  V. Arjunan, S. Subramanian, and S. Mohan, “Fourier transform infrared and Raman spectral analysis of trans-1,4-polyisoprene,” Spectrochimica Acta Part A, vol. 57, no. 13, pp. 2547–2554, 2001.
[15]  B. Huang, J. He, J. Song, et al., “New polymerization method of high trans1, 4—polyisoprene,” CN1048257C, China, January 2000.
[16]  B. Huang, Z. Zhao, W. Yao, et al., “Industrial production method of high trans1,4—polyisoprene,” CN1847272A, China, October 2006.
[17]  P. Wang, H. Shao, W. Yao, et al., “Polymerization of isoprene initiated with tetra-n-butyl titanate supported titanium catalyst and triethylaluminium,” China Synthetic Rubber Industry, vol. 32, pp. 284–284, 2009.
[18]  R. Gao, T. Yu, L. Bi, et al., “Research on novel Mg-Ti-Al complex and its catalysis for olefin polymerization,” China Synthetic Resin and Plastics, vol. 24, no. 6, pp. 25–28, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413