全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Physical and Chemical Modification on the Optical Rotatory Dispersion and Biological Activity of Chitosan Films

DOI: 10.1155/2013/825296

Full-Text   Cite this paper   Add to My Lib

Abstract:

The optical and bactericidal properties of acetic and basic chitosan films were studied. By the ORD technique, we found that these films differed in the values of their specific optical rotation and of their rotary and dispersive constants. A sign inversion of was observed when the acetic chitosan films were heat-treated. The bactericidal activity of the initial and dehydrated acetic films was analyzed, and their moisture content and optical and biological activities were compared. 1. Introduction The aminopolysaccharide chitosan is an optically active (chiral) biopolymer. The presence of asymmetrically substituted carbon atoms (chiral centers) in chitosan molecules leads to the emergence of optical activity in its link and, hence, in the macromolecule as a whole. Optical rotatory dispersion (ORD) and circular dichroism (CD) spectroscopy techniques are commonly applied to studying optical activity. They are based on unequal changes in the phase and intensity (the polarization vector module) of the left and right circularly polarized waves (their factors of refraction and extinction) in optically active media. CD spectroscopy is used to estimate the deacetylation degree of chitosan and its derivatives [1, 2], to characterize their physical and chemical properties [3, 4], to study liquid crystals (LC) of chitosan dispersions with nucleic acids [5] and lyotropic LC solutions of chitosan derivatives [6], and to establish the nativity degree of biologically active substances encapsulated into a polysaccharide matrix [7]. ORD is useful in estimating conformational properties of chitooligomers [8, 9], peculiarities of the spatial structure of chitosan and its salts with chiral organic acids [10], and so forth. Comparison of the capabilities of the ORD and CD techniques shows that within the wavelength range outside of the absorption bands of the chromophores (which, for the given aminopolysaccharide, falls within the far UV range), optical rotatory spectroscopy in some cases yields more information on optical activity and its correlation with other physical and chemical parameters of chitosan. For example, fairly recently, the ORD technique was used to reveal a correlation between chitosan’s optical activity and its molecular weight and deacetylation degree [11, 12], as well as to clarify the character of its biological activity [13]. The influence of metal ions (Ca2+, K+, and Na+) on macromolecular conformation was also shown [14]. It should be noted that all the previously-cited works have dealt with chitosan solutions and that no data on the optical

References

[1]  A. Domard, “Determination of N-acetyl content in chitosan samples by c.d. measurements,” International Journal of Biological Macromolecules, vol. 9, no. 6, pp. 333–336, 1987.
[2]  Y. Wu, T. Seo, S. Maeda, T. Sasaki, S. Irie, and K. Sakurai, “Circular dichroism induced by the helical conformations of acylated chitosan derivatives bearing cinnamate chromophores,” Journal of Polymer Science B, vol. 43, no. 11, pp. 1354–1364, 2005.
[3]  Y. Wu, T. Seo, S. Maeda, T. Sasaki, S. Irie, and K. Sakurai, “Preparation of benzoylchitosans and their chiroptical properties in dilute solutions,” Journal of Polymer Science B, vol. 42, no. 22, pp. 4107–4115, 2004.
[4]  J. Singh and P. K. Dutta, “Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications,” International Journal of Biological Macromolecules, vol. 45, no. 4, pp. 384–392, 2009.
[5]  Y. M. Yevdokimov and V. I. Salyanov, “Liquid crystalline dispersions of complexes formed by chitosan with double-stranded nucleic acids,” Liquid Crystals, vol. 30, no. 9, pp. 1057–1074, 2003.
[6]  D. K. Rout, S. K. Pulapura, and R. A. Gross, “Gel-sol transition and thermotropic behavior of a chitosan derivative in lyotropic solution,” Macromolecules, vol. 26, no. 22, pp. 6007–6010, 1993.
[7]  X. G. Zhang, D. Y. Teng, Z. M. Wu et al., “PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release,” Journal of Materials Science, vol. 19, no. 12, pp. 3525–3533, 2008.
[8]  S. Tsukada and Y. Inoue, “Conformational properties of chito-oligosaccharides: titration, optical rotation, and carbon-13 N.M.R. studies of chito-oligosaccharides,” Carbohydrate Research, vol. 88, no. 1, pp. 19–38, 1981.
[9]  A. Domard and N. Cartier, “Glucosamine oligomers: 1. Preparation and characterization,” International Journal of Biological Macromolecules, vol. 11, no. 5, pp. 297–302, 1989.
[10]  J. Kawada, T. Yui, Y. Abe, and K. Ogawa, “Crystalline features of chitosan-L- and D-lactic acid salts,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 4, pp. 700–704, 1998.
[11]  A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, G. N. Timofeeva, and B. A. Komarov, “Effect of molecular mass on the optical activity of chitosan,” Polymer Science B, vol. 49, no. 11-12, pp. 288–291, 2007.
[12]  M. Koralewski, K. H. Bodek, and K. Marczewska, “Optical properties of chitosan in aqueous solution,” Polish Chitin Society, Monograph 11, pp. 29–39, 2006.
[13]  A. B. Shipovskaya, V. I. Fomina, M. N. Kireyev, E. S. Kazakova, and I. A. Kasian, “Biological activity of chitosan oligomers,” Proceedings of the Saratov State University, vol. 8, no. 2, pp. 46–49, 2008.
[14]  M. Koralewski, K. H. Bodek, and T. Wachowski, “Temperature and metal ions influence on optical properties of chitosan in aqueous solution,” Polish Chitin Society, Monograph 12, pp. 79–86, 2007.
[15]  V. A. Vasiev, A. I. Tarasov, and G. D. Markova, “Water-insoluble salts of chitosan with carbonic acids,” Vysokomolekulyarnye Soedineniya, vol. 45, no. 10, pp. 1791–1792, 2003.
[16]  E. P. Ageev, G. A. Vikhoreva, M. A. Zotkin et al., “Structure and transport behavior of heat-treated chitosan films,” Polymer Science A, vol. 46, no. 12, pp. 1245–1250, 2004.
[17]  M. A. Zotkin, G. A. Vikhoreva, and A. S. Kechek'yan, “Thermal modification of chitosan films in the form of salts with various acids,” Polymer Science B, vol. 46, no. 1, pp. 39–42, 2004.
[18]  K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, and K. Ogawa, “Molecular and crystal structure of hydrated chitosan,” Macromolecules, vol. 30, no. 19, pp. 5849–5855, 1997.
[19]  M. A. Zotkin, G. A. Vikhoreva, T. V. Smotrina, and M. A. Derbenev, “Thermal modification and study of the structure of chitosan films,” Fibre Chemistry, vol. 36, no. 1, pp. 16–20, 2004.
[20]  A. B. Shipovskaya, Phase analysis of the cellulose ester-mesophasogenic solvent systems [Ph.D. thesis], Saratov State University, Saratov, Russia, 2009.
[21]  A. B. Shipovskaya, N. O. Gegel, S. Yu. Shchyogolev, and G. N. Timofeyeva, “A novel method for formation of cellulose acetate materials structure,” Izvestiya Vuzov, vol. 50, no. 3, pp. 19–24, 2007 (Russian).
[22]  A. B. Shipovskaya, N. O. Gegel, A. Yu. Abramov, and S. Yu. Shchyogolev, “A method of obtaining chiral sorbents,” 2008, Patent RF 2 339 445.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413