Both isobaric tags for relative and absolute quantitation (iTRAQ) and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24?h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or label-free methods were used, and the resulting samples were analyzed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS). To reduce a possible bias from quantitation software, we applied several software packages for each procedure. ProteinPilot and Scaffold Q+ software were used for iTRAQ-labeled samples, while Progenesis LC-MS and ProgenesisF-T2PQ/T3PQ were employed for label-free analyses. R2 correlation coefficients correlated well between two software packages applied to the same datasets with values between 0.48 and 0.78 for iTRAQ-label-based quantitations and 0.5 and 0.86 for label-free quantitations. Analyses of label-free samples showed higher levels of protein up- or downregulation in comparison to iTRAQ-labeled samples. The concentration differences were further evaluated by Western blotting for four downregulated proteins. These data suggested that the label-free method was more accurate than the iTRAQ method. 1. Introduction Quantitative proteomics based on mass spectrometry (MS) is an important methodology for biological and clinical research allowing, for example, the identification of functional modules and pathways, or the monitoring of disease biomarkers [1, 2]. Relative quantitation of two or more samples for studies of differential protein expression is of particular importance. Quantitative results can be gained using stable isotope labels or label-free methods [3–5]. In general, isotope labels offer higher reproducibility in quantitation, and label-free methods require highly reproducible LC-MS/MS platforms [3]. Several labeling methods based on heavy isotopes such as 2H, 13C, 15N, and 18O have been developed and allow relative quantitation using MS. In vivo metabolic labeling methods such as stable isotope labeling by amino acids in cell culture (SILAC) were introduced for arginine [6], lysine [7], tyrosine [8], or leucine [9]. For direct labeling of proteins or peptides, two strategies are being generally used. Isotope coded affinity tag (ICAT) labeling allows enrichment and MS analysis of cysteine-containing peptides [10]. iTRAQ
References
[1]
N. L. Anderson, N. G. Anderson, T. W. Pearson et al., “A human proteome detection and quantitation project,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 883–886, 2009.
[2]
J. R. Whiteaker, “The increasing role of mass spectrometry in quantitative clinical proteomics,” Clinical Chemistry, vol. 56, no. 9, pp. 1373–1374, 2010.
[3]
M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, “Quantitative mass spectrometry in proteomics: a critical review,” Analytical and Bioanalytical Chemistry, vol. 389, no. 4, pp. 1017–1031, 2007.
[4]
S. Sechi and Y. Oda, “Quantitative proteomics using mass spectrometry,” Current Opinion in Chemical Biology, vol. 7, no. 1, pp. 70–77, 2003.
[5]
W. X. Schulze and B. Usadel, “Quantitation in mass-spectrometry-based proteomics,” Annual Review of Plant Biology, vol. 61, pp. 491–516, 2010.
[6]
S. E. Ong, I. Kratchmarova, and M. Mann, “Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC),” Journal of Proteome Research, vol. 2, no. 2, pp. 173–181, 2003.
[7]
S. Martinovi?, T. D. Veenstra, G. A. Anderson, L. Pa?a-Tolic, and R. D. Smith, “Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level,” Journal of Mass Spectrometry, vol. 37, no. 1, pp. 99–107, 2002.
[8]
N. Ibarrola, H. Molina, A. Iwahori, and A. Pandey, “A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C] tyrosine,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 15805–15813, 2004.
[9]
S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular & cellular proteomics, vol. 1, no. 5, pp. 376–386, 2002.
[10]
S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,” Nature Biotechnology, vol. 17, no. 10, pp. 994–999, 1999.
[11]
P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004.
[12]
L. Choe, M. D'Ascenzo, N. R. Relkin et al., “8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease,” Proteomics, vol. 7, no. 20, pp. 3651–3660, 2007.
[13]
W. W. Wu, G. Wang, S. J. Baek, and R. F. Shen, “Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF,” Journal of Proteome Research, vol. 5, no. 3, pp. 651–658, 2006.
[14]
V. J. Patel, K. Thalassinos, S. E. Slade et al., “A comparison of labeling and label-free mass spectrometry-based proteomics approaches,” Journal of Proteome Research, vol. 8, no. 7, pp. 3752–3759, 2009.
[15]
H. Wang, S. Alvarez, and L. M. Hicks, “Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two chlamydomonas reinhardtii strains of interest for biofuels engineering,” Journal of Proteome Research, vol. 11, no. 1, pp. 487–501, 2012.
[16]
T. Laderas, C. Bystrom, D. Mcmillen, G. Fan, and S. Mcweeney, “TandTRAQ: an open-source tool for integrated protein identification and quantitation,” Bioinformatics, vol. 23, no. 24, pp. 3394–3396, 2007.
[17]
W. T. Lin, W. N. Hung, Y. H. Yian et al., “Multi-Q: a fully automated tool for multiplexed protein quantitation,” Journal of Proteome Research, vol. 5, no. 9, pp. 2328–2338, 2006.
[18]
I. V. Shilov, S. L. Seymourt, A. A. Patel et al., “The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra,” Molecular and Cellular Proteomics, vol. 6, no. 9, pp. 1638–1655, 2007.
[19]
P. K. Chong, C. S. Gan, T. K. Pham, and P. C. Wright, “Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections,” Journal of Proteome Research, vol. 5, no. 5, pp. 1232–1240, 2006.
[20]
A. L. Christoforou and K. S. Lilley, “Isobaric tagging approaches in quantitative proteomics: the ups and downs,” Analytical and Bioanalytical Chemistry, vol. 404, no. 4, pp. 1029–1037, 2012.
[21]
C. Evans, J. Noirel, S. Y. Ow et al., et al., “An insight into iTRAQ: where do we stand now?” Analytical and Bioanalytical Chemistry, vol. 404, pp. 1011–1027, 2012.
[22]
S. Y. Ow, M. Salim, J. Noirel, C. Evans, I. Rehman, and P. C. Wright, “iTRAQ underestimation in simple and complex mixtures: ‘the good, the bad and the ugly’,” Journal of Proteome Research, vol. 8, no. 11, pp. 5347–5355, 2009.
[23]
C. H. Ahrens, E. Brunner, E. Qeli, K. Basler, and R. Aebersold, “Generating and navigating proteome maps using mass spectrometry,” Nature Reviews Molecular Cell Biology, vol. 11, no. 11, pp. 789–801, 2010.
[24]
K. A. Neilson, N. A. Ali, S. Muralidharan et al., “Less label, more free: approaches in label-free quantitative mass spectrometry,” Proteomics, vol. 11, no. 4, pp. 535–553, 2011.
[25]
D. Chelius and P. V. Bondarenko, “Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry,” Journal of Proteome Research, vol. 1, no. 4, pp. 317–323, 2002.
[26]
B. Zhang, N. C. VerBerkmoes, M. A. Langston, E. Uberbacher, R. L. Hettich, and N. F. Samatova, “Detecting differential and correlated protein expression in label-free shotgun proteomics,” Journal of Proteome Research, vol. 5, no. 11, pp. 2909–2918, 2006.
[27]
B. Kuster, M. Schirle, P. Mallick, and R. Aebersold, “Scoring proteomes with proteotypic peptide probes,” Nature Reviews Molecular Cell Biology, vol. 6, no. 7, pp. 577–583, 2005.
[28]
P. Mallick, M. Schirle, S. S. Chen et al., “Computational prediction of proteotypic peptides for quantitative proteomics,” Nature Biotechnology, vol. 25, no. 1, pp. 125–131, 2007.
[29]
P. Lu, C. Vogel, R. Wang, X. Yao, and E. M. Marcotte, “Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation,” Nature Biotechnology, vol. 25, no. 1, pp. 117–124, 2007.
[30]
J. Grossmann, B. Roschitzki, C. Panse et al., “Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods,” Journal of Proteomics, vol. 73, no. 9, pp. 1740–1746, 2010.
[31]
S. Hayashi and J. C. Hogg, “Adenovirus infections and lung disease,” Current Opinion in Pharmacology, vol. 7, no. 3, pp. 237–243, 2007.
[32]
J. C. Hierholzer, “Adenoviruses in the immunocompromised host,” Clinical Microbiology Reviews, vol. 5, no. 3, pp. 262–274, 1992.
[33]
M. J. McConnell and M. J. Imperiale, “Biology of adenovirus and its use as a vector for gene therapy,” Human Gene Therapy, vol. 15, no. 11, pp. 1022–1033, 2004.
[34]
N. Tatsis and H. C. Ertl, “Adenoviruses as vaccine vectors,” Molecular Therapy, vol. 10, no. 4, pp. 616–629, 2004.
[35]
S. S. Ghosh, P. Gopinath, and A. Ramesh, “Adenoviral vectors: a promising tool for gene therapy,” Applied Biochemistry and Biotechnology, vol. 133, no. 1, pp. 9–29, 2006.
[36]
F. Sakurai, K. Kawabata, and H. Mizuguchi, “Adenovirus vectors composed of subgroup B adenoviruses,” Current Gene Therapy, vol. 7, no. 4, pp. 229–238, 2007.
[37]
J. M. Bergelson, J. A. Cunningham, G. Droguett et al., “Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5,” Science, vol. 275, no. 5304, pp. 1320–1323, 1997.
[38]
M. C. Bewley, K. Springer, Y. B. Zhang, P. Freimuth, and J. M. Flanagan, “Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR,” Science, vol. 286, no. 5444, pp. 1579–1583, 1999.
[39]
H. V. Trinh, G. Lesage, B. Vollenweider et al., “Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection,” Journal of Virology, vol. 86, no. 3, pp. 1623–1637, 2012.
[40]
O. Meier, K. Boucke, S. V. Hammer et al., “Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake,” Journal of Cell Biology, vol. 158, no. 6, pp. 1119–1131, 2002.
[41]
V. Lutschg, K. Boucke, S. Hemmi, and U. F. Greber :, “Chemotactic anti-viral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells,” Nature Communications, vol. 2, 2011.
[42]
M. F. Engelke, I.-H. Wang, D. Puntener et al., “Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection,” Cell Host and Microbe, vol. 10, no. 3, pp. 210–223, 2011.
[43]
D. Sirena, B. Lilienfeld, M. Eisenhut et al., “The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3,” Journal of Virology, vol. 78, no. 9, pp. 4454–4462, 2004.
[44]
H. Wang, Z. Y. Li, Y. Liu et al., “Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14,” Nature Medicine, vol. 17, no. 1, pp. 96–104, 2011.
[45]
U. F. Greber and F. L. Cosset, “Too smart to fail: how viruses exploit the complexity of host cells during entry,” Current Opinion in Virology, vol. 1, no. 1, pp. 3–5, 2011.
[46]
L. K?ll, J. D. Storey, M. J. MacCoss, and W. S. Noble, “Assigning significance to peptides identified by tandem mass spectrometry using decoy databases,” Journal of Proteome Research, vol. 7, no. 1, pp. 29–34, 2008.
[47]
A. J. Berk, “Adenoviridae: the viruses and their replication,” in In Fields Virology, D. M. Knipe and P. M. Howley, Eds., vol. 2, pp. 2356–2395, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
[48]
M. W. Wooten, M. L. Seibenhener, V. Mamidipudi, M. T. Diaz-Meco, P. A. Barker, and J. Moscat, “The Atypical Protein Kinase C-interacting Protein p62 Is a Scaffold for NF-κB activation by Nerve Growth Factor,” Journal of Biological Chemistry, vol. 276, no. 11, pp. 7709–7712, 2001.
[49]
D. Delacour, A. Koch, and R. Jacob, “The role of galectins in protein trafficking,” Traffic, vol. 10, no. 10, pp. 1405–1413, 2009.
[50]
W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010.
[51]
N. A. Karp, W. Huber, P. G. Sadowski, P. D. Charles, S. V. Hester, and K. S. Lilley, “Addressing accuracy and precision issues in iTRAQ quantitation,” Molecular and Cellular Proteomics, vol. 9, no. 9, pp. 1885–1897, 2010.
[52]
J. M. Burkhart, M. Vaudel, R. P. Zahedi, L. Martens, and A. Sickmann, “iTRAQ protein quantification: a quality-controlled workflow,” Proteomics, vol. 11, no. 6, pp. 1125–1134, 2011.
[53]
P. Mertins, N. D. Udeshi, K. R. Clauser et al., “iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics,” Molecular & Cellular Proteomics, vol. 11, no. 6, Article ID M111.014423, 2012.
[54]
S. C. Andrews, “The Ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor,” Biochimica et Biophysica Acta, vol. 1800, no. 8, pp. 691–705, 2010.
[55]
M. Busk, R. Pytela, and D. Sheppard, “Characterization of the integrin αvβ6 as a fibronectin-binding protein,” Journal of Biological Chemistry, vol. 267, no. 9, pp. 5790–5796, 1992.
[56]
L. M. Memmo and P. McKeown-Longo, “The alphavbeta5 integrin functions as an endocytic receptor for vitronectin,” Journal of Cell Science, vol. 111, no. 4, pp. 425–433, 1998.
[57]
J. M. Bergelson, “Receptors mediating adenovirus attachment and internalization,” Biochemical Pharmacology, vol. 57, no. 9, pp. 975–979, 1999.
[58]
K. Takayama, H. Ueno, X. H. Pei, Y. Nakanishi, J. Yatsunami, and N. Hara, “The levels of integrin α(v)β5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells,” Gene Therapy, vol. 5, no. 3, pp. 361–368, 1998.
[59]
T. J. Wickham, E. J. Filardo, D. A. Cheresh, and G. R. Nemerow, “Integrin αvβ5 selectively promotes adenovirus mediated cell membrane permeabilization,” Journal of Cell Biology, vol. 127, no. 1, pp. 257–264, 1994.
[60]
B. Amstutz, M. Gastaldelli, S. K?lin et al., “Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3,” EMBO Journal, vol. 27, no. 7, pp. 956–969, 2008.
[61]
D. M. Shayakhmetov, A. M. Eberly, Z. Y. Li, and A. Lieber, “Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs,” Journal of Virology, vol. 79, no. 2, pp. 1053–1061, 2005.
[62]
U. F. Greber and H. Kasamatsu, “Nuclear targeting of SV40 and adenovirus,” Trends in Cell Biology, vol. 6, no. 5, pp. 189–195, 1996.
[63]
M. Gastaldelli, N. Imelli, K. Boucke, B. Amstutz, O. Meier, and U. F. Greber, “Infectious adenovirus type 2 transport through early but not late endosomes,” Traffic, vol. 9, no. 12, pp. 2265–2278, 2008.
[64]
M. J. Goldman and J. M. Wilson, “Expression of α(v)β5 integrin is necessary for efficient adenovirus- mediated gene transfer in the human airway,” Journal of Virology, vol. 69, no. 10, pp. 5951–5958, 1995.
[65]
F. T. Liu and G. A. Rabinovich, “Galectins as modulators of tumour progression,” Nature Reviews Cancer, vol. 5, no. 1, pp. 29–41, 2005.
[66]
G. A. Rabinovich and J. M. Ilarregui, “Conveying glycan information into T-cell homeostatic programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments,” Immunological Reviews, vol. 230, no. 1, pp. 144–159, 2009.
[67]
O. B. Garner, H. C. Aguilar, J. A. Fulcher et al., “Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation,” PLoS pathogens, vol. 6, no. 7, Article ID e1000993, 2010.
[68]
M. Ouellet, S. Mercier, I. Pelletier et al., “Galectin-1 acts as a soluble host factor that promote HIV-1 infectivity through stabilization of virus attachment to host cells,” Journal of Immunology, vol. 174, no. 7, pp. 4120–4126, 2005.
[69]
E. Pohler, A. L. Craig, J. Cotton et al., “The Barrett's antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage,” Molecular and Cellular Proteomics, vol. 3, no. 6, pp. 534–547, 2004.
[70]
S. Cai, N. Bulus, P. M. Fonseca-Siesser et al., “CD98 modulates integrin β1 function in polarized epithelial cells,” Journal of Cell Science, vol. 118, no. 5, pp. 889–899, 2005.
[71]
G. K. Lau, A. Nanji, J. Hou et al., “Thymosin-α1 and famciclovir combination therapy activates T-cell response in patients with chronic hepatitis B virus infection in immune-tolerant phase,” Journal of Viral Hepatitis, vol. 9, no. 4, pp. 280–287, 2002.
[72]
D. Mahé, P. M?hl, R. Gattoni et al., “Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins: relation with splicing and early heat shock-induced splicing arrest,” Journal of Biological Chemistry, vol. 272, no. 3, pp. 1827–1836, 1997.
[73]
W. Jeong, T. S. Chang, E. S. Boja, H. M. Fales, and S. G. Rhee, “Roles of TRP14, a thioredoxin-related protein in tumor necrosis factor-α signaling pathways,” Journal of Biological Chemistry, vol. 279, no. 5, pp. 3151–3159, 2004.
[74]
H. L. Pahl, M. Sester, H. G. Burgert, and P. A. Baeuerle, “Activation of transcription factor NF-κB by the adenovirus E3/19K protein requires its ER retention,” Journal of Cell Biology, vol. 132, no. 4, pp. 511–522, 1996.