全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Status and Advances in Quantitative Proteomic Mass Spectrometry

DOI: 10.1155/2013/180605

Full-Text   Cite this paper   Add to My Lib

Abstract:

The accurate quantitation of proteins and peptides in complex biological systems is one of the most challenging areas of proteomics. Mass spectrometry-based approaches have forged significant in-roads allowing accurate and sensitive quantitation and the ability to multiplex vastly complex samples through the application of robust bioinformatic tools. These relative and absolute quantitative measures using label-free, tags, or stable isotope labelling have their own strengths and limitations. The continuous development of these methods is vital for increasing reproducibility in the rapidly expanding application of quantitative proteomics in biomarker discovery and validation. This paper provides a critical overview of the primary mass spectrometry-based quantitative approaches and the current status of quantitative proteomics in biomedical research. 1. Introduction Quantification in a proteomics setting relies on the ability to detect small changes in protein and peptide abundance in response to an altered state [1]. Differential analysis is generated from LC-MS experiments and can be carried out using both label and label-free approaches. For trace amounts of proteins within complex proteomes such as plasma, tears, and urine, no singular technique should be used as a stand-alone guarantee of quantitative precision without hypothesis-driven, targeted approaches. Enrichment and fractionation of specific classes of protein is beneficial during the discovery phase of a project, but because these methods can involve numerous steps, they can become a limiting factor for large scale validation. The variability introduced by multiple methods prior to quantitative mass spectrometry should be assessed, and it is paramount that protein measurements reflect the authentic concentration in the original sample. The development of methods for accurate protein quantitation is one of the most challenging areas of proteomics. Quantitative proteomics comes in two forms: absolute and relative. Relative quantitation compares the levels of a specific protein in different samples with results being expressed as a relative fold change of protein abundance [2]. Absolute quantitation is the determination of the exact amount or mass concentration of a protein, for example, in units of ng/mL of a plasma biomarker. Traditional proteomic quantitation approaches rely on high-resolution protein separation by 2D gels. The use of dyes, fluorophores, or radioactivity to label proteins allows visualization of spots/bands with differential intensities [3, 4]. These methods facilitate

References

[1]  S. E. Ong and M. Mann, “Mass spectrometry-based proteomics turns quantitative,” Nature Chemical Biology, vol. 1, no. 5, pp. 252–262, 2005.
[2]  M. H. Elliott, D. S. Smith, C. E. Parker, and C. Borchers, “Current trends in quantitative proteomics,” Journal of Mass Spectrometry, vol. 44, no. 12, pp. 1637–1660, 2009.
[3]  M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, “Quantitative mass spectrometry in proteomics: a critical review,” Analytical and Bioanalytical Chemistry, vol. 389, no. 4, pp. 1017–1031, 2007.
[4]  W. X. Schulze and B. Usadel, “Quantitation in mass-spectrometry-based proteomics,” Annual Review of Plant Biology, vol. 61, pp. 491–516, 2010.
[5]  K. S. Lilley, A. Razzaq, and P. Dupree, “Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation,” Current Opinion in Chemical Biology, vol. 6, no. 1, pp. 46–50, 2002.
[6]  S. P. Gygi, G. L. Corthals, Y. Zhang, Y. Rochon, and R. Aebersold, “Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9390–9395, 2000.
[7]  L. Ly and V. C. Wasinger, “Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome,” Proteomics, vol. 11, no. 4, pp. 513–534, 2011.
[8]  L. Ly and V. C. Wasinger, “Peptide enrichment and protein fractionation using selective electrophoresis,” Proteomics, vol. 8, no. 20, pp. 4197–4208, 2008.
[9]  P. Findeisen and M. Neumaier, “Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 6, pp. 666–684, 2009.
[10]  A. Michalski, J. Cox, and M. Mann, “More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS,” Journal of Proteome Research, vol. 10, no. 4, pp. 1785–1793, 2011.
[11]  H. Liu, R. G. Sadygov, and J. R. Yates III, “A model for random sampling and estimation of relative protein abundance in shotgun proteomics,” Analytical Chemistry, vol. 76, no. 14, pp. 4193–4201, 2004.
[12]  N. Rifai, M. A. Gillette, and S. A. Carr, “Protein biomarker discovery and validation: the long and uncertain path to clinical utility,” Nature Biotechnology, vol. 24, no. 8, pp. 971–983, 2006.
[13]  S. Surinova, R. Schiess, R. Hüttenhain, F. Cerciello, B. Wollscheid, and R. Aebersold, “On the development of plasma protein biomarkers,” Journal of Proteome Research, vol. 10, no. 1, pp. 5–16, 2011.
[14]  R. Schiess, B. Wollscheid, and R. Aebersold, “Targeted proteomic strategy for clinical biomarker discovery,” Molecular Oncology, vol. 3, no. 1, pp. 33–44, 2009.
[15]  E. Boschetti, M. Chung, and P. G. Righetti, “‘The quest for biomarkers’: are we on the right technical track?” PROTEOMICS—Clinical Applications, vol. 6, no. 1-2, pp. 22–41, 2012.
[16]  G. L. Hortin, S. A. Jortani, J. C. Ritchie, R. Valdes, and D. W. Chan, “Proteomics: a new diagnostic frontier,” Clinical Chemistry, vol. 52, no. 7, pp. 1218–1222, 2006.
[17]  A. Albalat, H. Mischak, and W. Mullen, “Clinical application of urinary proteomics/peptidomics,” Expert Review of Proteomics, vol. 8, no. 5, pp. 615–629, 2011.
[18]  R. D. Appel, J. R. Vargas, P. M. Palagi, D. Walther, and D. F. Hochstrasser, “Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms,” Electrophoresis, vol. 18, no. 15, pp. 2735–2748, 1997.
[19]  M. Bellew, M. Coram, M. Fitzgibbon et al., “A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS,” Bioinformatics, vol. 22, no. 15, pp. 1902–1909, 2006.
[20]  P. M. Palagi, D. Walther, M. Quadroni et al., “MSight: an image analysis software for liquid chromatography-mass spectrometry,” Proteomics, vol. 5, no. 9, pp. 2381–2384, 2005.
[21]  O. Kohlbacher, K. Reinert, C. Gr?pl et al., “TOPP—the OpenMS proteomics pipeline,” Bioinformatics, vol. 23, no. 2, pp. e191–e197, 2007.
[22]  J. D. Jaffe, D. R. Mani, K. C. Leptos, G. M. Church, M. A. Gillette, and S. A. Carr, “PEPPeR, a platform for experimental proteomic pattern recognition,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1927–1941, 2006.
[23]  L. N. Mueller, O. Rinner, A. Schmidt et al., “SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling,” Proteomics, vol. 7, no. 19, pp. 3470–3480, 2007.
[24]  B. C. Searle, “Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies,” Proteomics, vol. 10, no. 6, pp. 1265–1269, 2010.
[25]  J. C. Braisted, S. Kuntumalla, C. Vogel et al., “The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results,” BMC Bioinformatics, vol. 9, article 529, 2008.
[26]  W. X. Schulze and M. Mann, “A novel proteomic screen for peptide-protein interactions,” The Journal of Biological Chemistry, vol. 279, no. 11, pp. 10756–10764, 2004.
[27]  D. K. Han, J. Eng, H. Zhou, and R. Aebersold, “Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry,” Nature Biotechnology, vol. 19, no. 10, pp. 946–951, 2001.
[28]  X. J. Li, H. Zhang, J. A. Ranish, and R. Aebersold, “Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 23, pp. 6648–6657, 2003.
[29]  B. D. Halligan, R. Y. Slyper, S. N. Twigger, W. Hicks, M. Olivier, and A. S. Greene, “ZoomQuant: an application for the quantitation of stable isotope labeled peptides,” Journal of the American Society for Mass Spectrometry, vol. 16, no. 3, pp. 302–306, 2005.
[30]  W. T. Lin, W. N. Hung, Y. H. Yian et al., “Multi-Q: a fully automated tool for multiplexed protein quantitation,” Journal of Proteome Research, vol. 5, no. 9, pp. 2328–2338, 2006.
[31]  I. P. Shadforth, T. P. J. Dunkley, K. S. Lilley, and C. Bessant, “i-Tracker: for quantitative proteomics using iTRAQ?,” BMC Genomics, vol. 6, article 145, 2005.
[32]  B. MacLean, D. M. Tomazela, N. Shulman et al., “Skyline: an open source document editor for creating and analyzing targeted proteomics experiments,” Bioinformatics, vol. 26, no. 7, Article ID btq054, pp. 966–968, 2010.
[33]  J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,” Nature Biotechnology, vol. 26, no. 12, pp. 1367–1372, 2008.
[34]  D. B. Martin, T. Holzman, D. May et al., “MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments,” Molecular and Cellular Proteomics, vol. 7, no. 11, pp. 2270–2278, 2008.
[35]  N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular and Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002.
[36]  G. S. Omenn, D. J. States, T. W. Blackwell et al., “Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study,” Nature Biotechnology, vol. 24, no. 3, pp. 333–338, 2006.
[37]  E. F. Petricoin, C. Belluco, R. P. Araujo, and L. A. Liotta, “The blood peptidome: a higher dimension of information content for cancer biomarker discovery,” Nature Reviews Cancer, vol. 6, no. 12, pp. 961–967, 2006.
[38]  J. A. Hewel, S. Phanse, J. Liu, N. Bousette, A. Gramolini, and A. Emili, “Targeted protein identification, quantification and reporting for high-resolution nanoflow targeted peptide monitoring,” Journal of Proteomics, 2012.
[39]  S. M. Hanash, S. J. Pitteri, and V. M. Faca, “Mining the plasma proteome for cancer biomarkers,” Nature, vol. 452, no. 7187, pp. 571–579, 2008.
[40]  W. C. S. Cho and C. H. K. Cheng, “Oncoproteomics: current trends and future perspectives,” Expert Review of Proteomics, vol. 4, no. 3, pp. 401–410, 2007.
[41]  J. Granger, J. Siddiqui, S. Copeland, and D. Remick, “Albumin depletion of human plasma also removes low abundance proteins including the cytokines,” Proteomics, vol. 5, no. 18, pp. 4713–4718, 2005.
[42]  E. Bellei, S. Bergamini, E. Monari et al., “High-abundance proteins depletion for serum proteomic analysis: concomitant removal of non-targeted proteins,” Amino Acids, vol. 40, no. 1, pp. 145–156, 2011.
[43]  A. J. Rai and F. Vitzthum, “Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics,” Expert Review of Proteomics, vol. 3, no. 4, pp. 409–426, 2006.
[44]  R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928, pp. 198–207, 2003.
[45]  D. Reker and L. Malmstr?m, “Bioinformatic challenges in targeted proteomics,” Journal of Proteome Research, vol. 11, no. 9, pp. 4393–4402, 2012.
[46]  N. Yang, S. Feng, K. Shedden et al., “Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification,” Clinical Cancer Research, vol. 17, no. 10, pp. 3349–3359, 2011.
[47]  L. F. Quintana, J. M. Campistol, M. P. Alcolea, E. Ba?on-Maneus, A. Solé-González, and P. R. Cutillas, “Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction,” Molecular and Cellular Proteomics, vol. 8, no. 7, pp. 1658–1673, 2009.
[48]  J. S. Hanas, J. R. Hocker, J. Y. Cheung et al., “Biomarker identification in human pancreatic cancer sera,” Pancreas, vol. 36, no. 1, pp. 61–69, 2008.
[49]  H. Xue, B. Lü, J. Zhang et al., “Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach,” Journal of Proteome Research, vol. 9, no. 1, pp. 545–555, 2010.
[50]  D. Besson, A. H. Pavageau, I. Valo et al., “A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker,” Molecular and Cellular Proteomics, vol. 10, no. 12, Article ID M111.009712, 2011.
[51]  O. P. Bondar, D. R. Barnidge, E. W. Klee, B. J. Davis, and G. G. Klee, “LC-MS/MS quantification of Zn-α2 glycoprotein: a potential serum biomarker for prostate cancer,” Clinical Chemistry, vol. 53, no. 4, pp. 673–678, 2007.
[52]  R. Chaerkady, H. C. Harsha, A. Nalli et al., “A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma,” Journal of Proteome Research, vol. 7, no. 10, pp. 4289–4298, 2008.
[53]  L. Dayon, A. Hainard, V. Licker et al., “Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags,” Analytical Chemistry, vol. 80, no. 8, pp. 2921–2931, 2008.
[54]  M. Wang, J. You, K. G. Bemis, T. J. Tegeler, and D. P. G. Brown, “Label-free mass spectrometry-based protein quantification technologies in proteomic analysis,” Briefings in Functional Genomics and Proteomics, vol. 7, no. 5, pp. 329–339, 2008.
[55]  W. M. Old, K. Meyer-Arendt, L. Aveline-Wolf et al., “Comparison of label-free methods for quantifying human proteins by shotgun proteomics,” Molecular and Cellular Proteomics, vol. 4, no. 10, pp. 1487–1502, 2005.
[56]  A. Prakash, B. Piening, J. Whiteaker et al., “Assessing bias in experiment design for large scale mass spectrometry-based quantitative proteomics,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1741–1748, 2007.
[57]  J. Rappsilber, U. Ryder, A. I. Lamond, and M. Mann, “Large-scale proteomic analysis of the human spliceosome,” Genome Research, vol. 12, no. 8, pp. 1231–1245, 2002.
[58]  E. Xixi, P. Dimitraki, K. Vougas, S. Kossida, G. Lubec, and M. Fountoulakis, “Proteomic analysis of the mouse brain following protein enrichment by preparative electrophoresis,” Electrophoresis, vol. 27, no. 7, pp. 1424–1431, 2006.
[59]  W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010.
[60]  S. E. Ong, L. J. Foster, and M. Mann, “Mass spectrometric-based approaches in quantitative proteomics,” Methods, vol. 29, no. 2, pp. 124–130, 2003.
[61]  S. Julka and F. Regnier, “Quantification in proteomics through stable isotope coding: a review,” Journal of Proteome Research, vol. 3, no. 3, pp. 350–363, 2004.
[62]  S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular and Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002.
[63]  S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,” Nature Biotechnology, vol. 17, no. 10, pp. 994–999, 1999.
[64]  A. Schmidt, J. Kellermann, and F. Lottspeich, “A novel strategy for quantitative proteomics using isotope-coded protein labels,” Proteomics, vol. 5, no. 1, pp. 4–15, 2005.
[65]  J. Stahl-Zeng, V. Lange, R. Ossola et al., “High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1809–1817, 2007.
[66]  L. Anderson and C. L. Hunter, “Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins,” Molecular and Cellular Proteomics, vol. 5, no. 4, pp. 573–588, 2006.
[67]  H. Keshishian, T. Addona, M. Burgess, E. Kuhn, and S. A. Carr, “Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution,” Molecular and Cellular Proteomics, vol. 6, no. 12, pp. 2212–2229, 2007.
[68]  M. J. McKay, J. Sherman, M. T. Laver, M. S. Baker, S. J. Clarke, and M. P. Molloy, “The development of multiple reaction monitoring assays for liver-derived plasma proteins,” PROTEOMICS—Clinical Applications, vol. 1, no. 12, pp. 1570–1581, 2007.
[69]  S. Kirsch, J. Widart, J. Louette, J. F. Focant, and E. De Pauw, “Development of an absolute quantification method targeting growth hormone biomarkers using liquid chromatography coupled to isotope dilution mass spectrometry,” Journal of Chromatography A, vol. 1153, no. 1-2, pp. 300–306, 2007.
[70]  E. Kuhn, J. Wu, J. Karl, H. Liao, W. Zolg, and B. Guild, “Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards,” Proteomics, vol. 4, no. 4, pp. 1175–1186, 2004.
[71]  T. Fortin, A. Salvador, J. P. Charrier et al., “Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 1006–1015, 2009.
[72]  C. Huillet, A. Adrait, D. Lebert et al., “Accurate quantification of cardiovascular biomarkers in serum using protein standard absolute quantification (PSAQ) and selected reaction monitoring,” Molecular and Cellular Proteomics, vol. 11, no. 2, Article ID M111.008235, 2012.
[73]  Y. Zhao, W. Jia, W. Sun et al., “Combination of improved 18O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer,” Journal of Proteome Research, vol. 9, no. 6, pp. 3319–3327, 2010.
[74]  E. Kuhn, T. Addona, H. Keshishian et al., “Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry,” Clinical Chemistry, vol. 55, no. 6, pp. 1108–1117, 2009.
[75]  M. Lopez, R. Kuppusamy, D. Sarracino et al., “Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester trisomy 21 maternal serum,” Journal of Proteome Research, vol. 10, no. 1, pp. 133–142, 2011.
[76]  D. Domanski, A. J. Percy, J. Yang et al., “MRM‐based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma,” Proteomics, vol. 12, no. 8, pp. 1222–1243, 2012.
[77]  A. Thompson, J. Sch?fer, K. Kuhn et al., “Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS,” Analytical Chemistry, vol. 75, no. 8, pp. 1895–1904, 2003.
[78]  P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004.
[79]  S. Wiese, K. A. Reidegeld, H. E. Meyer, and B. Warscheid, “Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research,” Proteomics, vol. 7, no. 3, pp. 340–350, 2007.
[80]  K. Aggarwal, L. H. Choe, and K. H. Lee, “Shotgun proteomics using the iTRAQ isobaric tags,” Briefings in Functional Genomics and Proteomics, vol. 5, no. 2, pp. 112–120, 2006.
[81]  M. Latterich, M. Abramovitz, and B. Leyland-Jones, “Proteomics: new technologies and clinical applications,” European Journal of Cancer, vol. 44, no. 18, pp. 2737–2741, 2008.
[82]  K. L. Simpson, A. D. Whetton, and C. Dive, “Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification,” Journal of Chromatography B, vol. 877, no. 13, pp. 1240–1249, 2009.
[83]  V. Lange, P. Picotti, B. Domon, and R. Aebersold, “Selected reaction monitoring for quantitative proteomics: a tutorial,” Molecular Systems Biology, vol. 4, no. 1, article 222, 2008.
[84]  S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, “Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6940–6945, 2003.
[85]  W. J. Qian, J. M. Jacobs, T. Liu, D. G. Camp, and R. D. Smith, “Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1727–1744, 2006.
[86]  A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, and F. M. White, “Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5860–5865, 2007.
[87]  C. Ludwig, M. Claassen, A. Schmidt, and R. Aebersold, “Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry,” Molecular and Cellular Proteomics, vol. 11, no. 3, Article ID M111.013987, 2012.
[88]  T. A. Addona, S. E. Abbatiello, B. Schilling, et al., “Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma,” Nature Biotechnology, vol. 27, no. 7, pp. 633–641, 2009.
[89]  S. Gallien, E. Duriez, C. Crone, M. Kellmann, T. Moehring, and B. Domon, “Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer,” Molecular and Cellular Proteomics, vol. 11, no. 12, pp. 1709–1723, 2012.
[90]  A. C. Peterson, J. D. Russell, D. J. Bailey, M. S. Westphall, and J. J. Coon, “Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics,” Molecular and Cellular Proteomics, vol. 11, no. 11, pp. 1475–1488, 2012.
[91]  K. K?hler and H. Seitz, “Validation processes of protein biomarkers in serum—a cross platform comparison,” Sensors, vol. 12, no. 9, pp. 12710–12728, 2012.
[92]  S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nature Reviews Drug Discovery, vol. 5, no. 4, pp. 310–321, 2006.
[93]  A. A. Ellington, I. J. Kullo, K. R. Bailey, and G. G. Klee, “Antibody-based protein multiplex platforms: technical and operational challenges,” Clinical Chemistry, vol. 56, no. 2, pp. 186–193, 2010.
[94]  N. L. Anderson, N. G. Anderson, L. R. Haines, D. B. Hardie, R. W. Olafson, and T. W. Pearson, “Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA),” Journal of Proteome Research, vol. 3, no. 2, pp. 235–244, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133