全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Internal Standard-Assisted Synthesis and Degradation Proteomic Approach Reveals the Potential Linkage between VPS4B Depletion and Activation of Fatty Acid β-Oxidation in Breast Cancer Cells

DOI: 10.1155/2013/291415

Full-Text   Cite this paper   Add to My Lib

Abstract:

The endosomal/lysosomal system, in particular the endosomal sorting complexes required for transport (ESCRTs), plays an essential role in regulating the trafficking and destination of endocytosed receptors and their associated signaling molecules. Recently, we have shown that dysfunction and down-regulation of vacuolar protein sorting 4B (VPS4B), an ESCRT-III associated protein, under hypoxic conditions can lead to the abnormal accumulation of epidermal growth factor receptor (EGFR) and aberrant EGFR signaling in breast cancer. However, the pathophysiological consequences of VPS4B dysfunction remain largely elusive. In this study, we used an internal standard-assisted synthesis and degradation mass spectrometry (iSDMS) method, which permits the direct measurement of protein synthesis, degradation and protein dynamic expression, to address the effects of VPS4B dysfunction in altering EGF-mediated protein expression. Our initial results indicate that VPS4B down-regulation decreases the expression of many proteins involved in glycolytic pathways, while increased the expression of proteins with roles in mitochondrial fatty acid β-oxidation were up-regulated in VPS4B-depleted cells. This observation is also consistent with our previous finding that hypoxia can induce VPS4B down-regulated, suggesting that the adoption of fatty acid β-oxidation could potentially serve as an alternative energy source and survival mechanism for breast cancer cells in response to hypoxia-mediated VPS4B dysfunction. 1. Introduction VPS4B, a member of the AAA (ATPases associated with diverse cellular activities) protein family, plays an important role in the lysosomal degradation pathway, which functions in ligand-induced membrane receptor downregulation. In lysosomal degradation, endocytosed receptors are sorted into multivesicular bodies (MVBs), which requires the sequential assembly of endosomal sorting complex required for transport I, II, and III (ESCRT-I, -II, and -III) on the endosomal membrane [1]. VPS4B functions to dissociate ESCRT-III from endosomes for further rounds of endosomal sorting [2]. Expression of functionally inactive VPS4B results in the accumulation of receptors on abnormally enlarged endosomes (class E compartments) and the abolishment of MVB biogenesis [3–6]. As an essential ESCRT-III interacting protein, VPS4B is also involved in protein trafficking among membrane compartments and in signal transduction [4, 5, 7, 8]. Epidermal growth factor- (EGF-) mediated signaling is one of the most important signaling pathways for cell growth, proliferation, invasion,

References

[1]  D. Teis, S. Saksena, and S. D. Emr, “Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation,” Developmental Cell, vol. 15, no. 4, pp. 578–589, 2008.
[2]  B. A. Davies, I. F. Azmi, and D. J. Katzmann, “Regulation of Vps4 ATPase activity by ESCRT-III,” Biochemical Society Transactions, vol. 37, no. 1, pp. 143–145, 2009.
[3]  N. Bishop and P. Woodman, “ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking,” Molecular Biology of the Cell, vol. 11, no. 1, pp. 227–239, 2000.
[4]  H. Fujita, M. Yamanaka, K. Imamura et al., “A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class E vps phenotype in mammalian cells,” Journal of Cell Science, vol. 116, no. 2, pp. 401–414, 2003.
[5]  T. Yoshimori, F. Yamagata, A. Yamamoto et al., “The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells,” Molecular Biology of the Cell, vol. 11, no. 2, pp. 747–763, 2000.
[6]  E. Mizuno, T. Iura, A. Mukai, T. Yoshimori, N. Kitamura, and M. Komada, “Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes,” Molecular Biology of the Cell, vol. 16, no. 11, pp. 5163–5174, 2005.
[7]  C. Tu, C. F. Ortega-Cava, P. Winograd et al., “Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 37, pp. 16107–16112, 2010.
[8]  R. J. Flinn, Y. Yan, S. Goswami, P. J. Parker, and J. M. Backer, “The late endosome is essential for mTORC1 signaling,” Molecular Biology of the Cell, vol. 21, no. 5, pp. 833–841, 2010.
[9]  Y. Yarden and M. X. Sliwkowski, “Untangling the ErbB signalling network,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 127–137, 2001.
[10]  A. Sorkin and L. K. Goh, “Endocytosis and intracellular trafficking of ErbBs,” Experimental Cell Research, vol. 315, no. 4, pp. 683–696, 2009.
[11]  M. P. Oksvold, E. Skarpen, L. Wier?d, R. E. Paulsen, and H. S. Huitfeldt, “Re-localization of activated EGF receptor and its signal transducers to multivesicular compartments downstream of early endosomes in response to EGF,” European Journal of Cell Biology, vol. 80, no. 4, pp. 285–294, 2001.
[12]  H. H. Lin, X. Li, J.-L. Chen et al., “Identification of an AAA ATPase VPS4B-dependent pathway that modulates epidermal growth factor receptor abundance and signaling during hypoxia,” Molecular and Cellular Biology, vol. 32, no. 6, pp. 1124–1138, 2012.
[13]  A. Ciechanover and A. L. Schwartz, “The ubiquitin system: pathogenesis of human diseases and drug targeting,” Biochimica et Biophysica Acta, vol. 1695, no. 1–3, pp. 3–17, 2004.
[14]  K. I. Nakayama and K. Nakayama, “Ubiquitin ligases: cell-cycle control and cancer,” Nature Reviews Cancer, vol. 6, no. 5, pp. 369–381, 2006.
[15]  D. S. Hirsch, Y. Shen, and W. J. Wu, “Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42,” Cancer Research, vol. 66, no. 7, pp. 3523–3530, 2006.
[16]  N. E. Willmarth, A. Baillo, M. L. Dziubinski, K. Wilson, D. J. Riese, and S. P. Ethier, “Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop,” Cellular Signalling, vol. 21, no. 2, pp. 212–219, 2009.
[17]  S. Chandarlapaty, M. Scaltriti, P. Angelini et al., “Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth,” Oncogene, vol. 29, no. 3, pp. 325–334, 2010.
[18]  Y. Wang, O. Roche, M. S. Yan et al., “Regulation of endocytosis via the oxygen-sensing pathway,” Nature Medicine, vol. 15, no. 3, pp. 319–325, 2009.
[19]  I. V. Hinkson and J. E. Elias, “The dynamic state of protein turnover: it's about time,” Trends in Cell Biology, vol. 21, no. 5, pp. 293–303, 2011.
[20]  J. M. Pratt, J. Petty, I. Riba-Garcia et al., “Dynamics of protein turnover, a missing dimension in proteomics,” Molecular & Cellular Proteomics, vol. 1, no. 8, pp. 579–591, 2002.
[21]  B. J. Cargile, J. L. Bundy, A. M. Grunden, and J. L. Stephenson, “Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover,” Analytical Chemistry, vol. 76, no. 1, pp. 86–97, 2004.
[22]  P. K. Rao, G. Marcela Rodriguez, I. Smith, and Q. Li, “Protein dynamics in iron-starved Mycobacterium tuberculosis revealed by turnover and abundance measurement using hybrid-linear ion trap-fourier transform mass spectrometry,” Analytical Chemistry, vol. 80, no. 18, pp. 6860–6869, 2008.
[23]  T. Maier, A. Schmidt, M. Güell et al., “Quantification of mRNA and protein and integration with protein turnover in a bacterium,” Molecular Systems Biology, vol. 7, article 511, 2011.
[24]  K. P. Jayapal, S. Sui, R. J. Philp et al., “Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems,” Journal of Proteome Research, vol. 9, no. 5, pp. 2087–2097, 2010.
[25]  J. S. Andersen, Y. W. Lam, A. K. L. Leung et al., “Nucleolar proteome dynamics,” Nature, vol. 433, no. 7021, pp. 77–83, 2005.
[26]  F. M. Boisvert, Y. Ahmad, M. Gierliński et al., “A quantitative spatial proteomics analysis of proteome turnover in human cells.,” Molecular & Cellular Proteomics, vol. 11, no. 3, p. M111.011429, 2012.
[27]  M. K. Doherty, D. E. Hammond, M. J. Clague, S. J. Gaskell, and R. J. Beynon, “Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC,” Journal of Proteome Research, vol. 8, no. 1, pp. 104–112, 2009.
[28]  M. K. Doherty, L. McClean, I. Edwards et al., “Protein turnover in chicken skeletal muscle: understanding protein dynamics on a proteome-wide scale,” British Poultry Science, vol. 45, supplement 1, pp. S27–S28, 2004.
[29]  M. K. Doherty, C. Whitehead, H. McCormack, S. J. Gaskell, and R. J. Beynon, “Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates,” Proteomics, vol. 5, no. 2, pp. 522–533, 2005.
[30]  Y. Zhang, S. Reckow, C. Webhofer et al., “Proteome scale turnover analysis in live animals using stable isotope metabolic labeling,” Analytical Chemistry, vol. 83, no. 5, pp. 1665–1672, 2011.
[31]  J. N. Savas, B. H. Toyama, T. Xu, J. R. Yates III, and M. W. Hetzer, “Extremely long-lived nuclear pore proteins in the rat brain,” Science, vol. 335, no. 6071, p. 942, 2012.
[32]  H. V. Nguyen, J. L. Chen, J. Zhong et al., “SUMOylation attenuates sensitivity toward hypoxia- or desferroxamine- induced injury by modulating adaptive responses in salivary epithelial cells,” American Journal of Pathology, vol. 168, no. 5, pp. 1452–1463, 2006.
[33]  J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, “Universal sample preparation method for proteome analysis,” Nature Methods, vol. 6, no. 5, pp. 359–362, 2009.
[34]  J. Rappsilber, Y. Ishihama, and M. Mann, “Stop And Go Extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics,” Analytical Chemistry, vol. 75, no. 3, pp. 663–670, 2003.
[35]  Y. Ishihama, J. Rappsilber, and M. Mann, “Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics,” Journal of Proteome Research, vol. 5, no. 4, pp. 988–994, 2006.
[36]  J. R. Wi?niewski, A. Zougman, and M. Mann, “Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome,” Journal of Proteome Research, vol. 8, no. 12, pp. 5674–5678, 2009.
[37]  J. E. Elias and S. P. Gygi, “Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry,” Nature Methods, vol. 4, no. 3, pp. 207–214, 2007.
[38]  Z. Liao, Y. Wan, S. N. Thomas, and A. J. Yang, “IsoQuant: a software tool for stable isotope labeling by amino acids in cell culture-based mass spectrometry quantitation,” Analytical Chemistry, vol. 84, no. 10, pp. 4535–4543, 2012.
[39]  I. M. Arias, D. Doyle, and R. T. Schimke, “Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver,” Journal of Biological Chemistry, vol. 244, no. 12, pp. 3303–3315, 1969.
[40]  M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa, “KEGG for representation and analysis of molecular networks involving diseases and drugs,” Nucleic Acids Research, vol. 38, no. 1, pp. D355–D360, 2009.
[41]  O. WARBURG, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 269–270, 1956.
[42]  R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004.
[43]  J. W. Wojtkowiak and R. J. Gillies, “Autophagy on acid,” Autophagy, vol. 8, no. 11, 2012.
[44]  S. Zha, S. Ferdinandusse, J. L. Hicks et al., “Peroxisomal branched chain fatty acid β-oxidation pathway is upregulated in prostate cancer,” Prostate, vol. 63, no. 4, pp. 316–323, 2005.
[45]  Y. Liu, “Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 9, no. 3, pp. 230–234, 2006.
[46]  I. Samudio, M. Fiegl, T. McQueen, K. Clise-Dwyer, and M. Andreeff, “The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation,” Cancer Research, vol. 68, no. 13, pp. 5198–5205, 2008.
[47]  F. Wang, M. Kumagai-Braesch, M. K. Herrington, J. Larsson, and J. Permert, “Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system,” Metabolism, vol. 58, no. 8, pp. 1131–1136, 2009.
[48]  J. Khasawneh, M. D. Schulz, A. Walch et al., “Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3354–3359, 2009.
[49]  V. R. Holla, H. Wu, Q. Shi, D. G. Menter, and R. N. DuBois, “Nuclear orphan receptor nr4a2 modulates fatty acid oxidation pathways in colorectal cancer,” Journal of Biological Chemistry, vol. 286, no. 34, pp. 30003–30009, 2011.
[50]  J. A. Menendez and R. Lupu, “Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis,” Nature Reviews Cancer, vol. 7, no. 10, pp. 763–777, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133