全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Peptide-Based SILAC Method to Identify the Posttranslational Modifications Provides Evidence for Unconventional Ubiquitination in the ER-Associated Degradation Pathway

DOI: 10.1155/2013/857918

Full-Text   Cite this paper   Add to My Lib

Abstract:

The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for disposing misfolded proteins from the endoplasmic reticulum by inducing their ubiquitination and degradation. Ubiquitination is conventionally observed on lysine residues and has been demonstrated on cysteine residues and protein N-termini. Ubiquitination is fundamental to the ERAD process; however, a mutant T-cell receptor α (TCRα) lacking lysine residues is targeted for the degradation by the ERAD pathway. We have shown that ubiquitination of lysine-less TCRα occurs on internal, non-lysine residues and that the same E3 ligase conjugates ubiquitin to TCRα in the presence or absence of lysine residues. Mass-spectrometry indicates that WT-TCRα is ubiquitinated on multiple lysine residues. Recent publications have provided indirect evidence that serine and threonine residues may be modified by ubiquitin. Using a novel peptide-based stable isotope labeling in cell culture (SILAC) approach, we show that specific lysine-less TCRα peptides become modified. In this study, we demonstrate that it is possible to detect both ester and thioester based ubiquitination events, although the exact linkage on lysine-less TCRα remains elusive. These findings demonstrate that SILAC can be used as a tool to identify modified peptides, even those with novel modifications that may not be detected using conventional proteomic work flows or informatics algorithms. 1. Introduction Approximately one-third of newly synthesized proteins are targeted for the degradation by the proteasome within minutes of their synthesis as a result of premature termination or misfolding. ER-associated degradation (ERAD) is a specialized pathway that targets misfolded nascent proteins in the endoplasmic reticulum (ER) for degradation via the proteasome [1]. In the ER, misfolded proteins are recognized by several quality control mechanisms that escort them to a channel for retrotranslocation to the cytosol. Soon after retrotranslocation, these proteins are ubiquitinated and extracted from the ER membrane with the help of the Cdc48p/p97 complex. Ubiquitination acts as a signal to target proteins to the proteasome and thus is an essential process in the degradation of newly synthesized defective proteins. Ubiquitination is a post-translational modification that regulates many cellular events such as protein degradation, endocytosis, and the cell cycle. The process of ubiquitination involves the concerted action of an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. The last

References

[1]  B. Meusser, C. Hirsch, E. Jarosch, and T. Sommer, “ERAD: the long road to destruction,” Nature Cell Biology, vol. 7, no. 8, pp. 766–772, 2005.
[2]  C. M. Pickart, “Mechanisms underlying ubiquitination,” Annual Review of Biochemistry, vol. 70, pp. 503–533, 2001.
[3]  A. Mogk, R. Schmidt, and B. Bukau, “The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies,” Trends in Cell Biology, vol. 17, no. 4, pp. 165–172, 2007.
[4]  K. Cadwell and L. Coscoy, “Biochemistry: ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase,” Science, vol. 309, no. 5731, pp. 127–130, 2005.
[5]  X. Wang, R. A. Herr, W. J. Chua, L. Lybarger, E. J. H. J. Wiertz, and T. H. Hansen, “Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3,” Journal of Cell Biology, vol. 177, no. 4, pp. 613–624, 2007.
[6]  C. Williams, M. Van Den Berg, R. R. Sprenger, and B. Distel, “A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p,” The Journal of Biological Chemistry, vol. 282, no. 31, pp. 22534–22543, 2007.
[7]  S. W. G. Tait, E. De Vries, C. Maas, A. M. Keller, C. S. D'Santos, and J. Borst, “Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment,” Journal of Cell Biology, vol. 179, no. 7, pp. 1453–1466, 2007.
[8]  R. J. Deshaies and C. A. P. Joazeiro, “RING domain E3 ubiquitin ligases,” Annual Review of Biochemistry, vol. 78, pp. 399–434, 2009.
[9]  H. Yu, G. Kaung, S. Kobayashi, and R. R. Kopito, “Cytosolic degradation of T-cell receptor α chains by the proteasome,” Journal of Biological Chemistry, vol. 272, no. 33, pp. 20800–20804, 1997.
[10]  H. Yu and R. R. Kopito, “The role of multiubiquitination in dislocation and degradation of the α subunit of the T cell antigen receptor,” The Journal of Biological Chemistry, vol. 274, no. 52, pp. 36852–36858, 1999.
[11]  S. Tiwari and A. M. Weissman, “Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits: involvement of ER-associated ubiquitin-conjugating enzymes (E2s),” The Journal of Biological Chemistry, vol. 276, no. 19, pp. 16193–16200, 2001.
[12]  M. Kikkert, R. Doolman, M. Dai et al., “Human HRD1 Is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum,” The Journal of Biological Chemistry, vol. 279, no. 5, pp. 3525–3534, 2004.
[13]  Y. Shimizu, Y. Okuda-Shimizu, and L. M. Hendershot, “Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids,” Molecular Cell, vol. 40, no. 6, pp. 917–926, 2010.
[14]  S. Ishikura, A. M. Weissman, and J. S. Bonifacino, “Serine residues in the cytosolic tail of the T-cell antigen receptor α-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein,” The Journal of Biological Chemistry, vol. 285, no. 31, pp. 23916–23924, 2010.
[15]  S. Tanner, H. Shu, A. Frank et al., “InsPecT: identification of posttranslationally modified peptides from tandem mass spectra,” Analytical Chemistry, vol. 77, no. 14, pp. 4626–4639, 2005.
[16]  L. Phu, A. Izrael-Tomasevic, M. L. Matsumoto et al., “Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals,” Molecular & Cellular Proteomics, vol. 10, no. 5, Article ID M110.003756, 2011.
[17]  M. J. Eddins, C. M. Carlile, K. M. Gomez, C. M. Pickart, and C. Wolberger, “Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation,” Nature Structural and Molecular Biology, vol. 13, no. 10, pp. 915–920, 2006.
[18]  D. S. Grenda, M. Murakami, J. Ghatak et al., “Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis,” Blood, vol. 110, no. 13, pp. 4179–4187, 2007.
[19]  K. Cadwell and L. Coscoy, “The specificities of kaposi's sarcoma-associated herpesvirus-encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine residues within the intracytoplasmic domains of their targets,” Journal of Virology, vol. 82, no. 8, pp. 4184–4189, 2008.
[20]  C. Soto, “Protein misfolding and disease; protein refolding and therapy,” FEBS Letters, vol. 498, no. 2-3, pp. 204–207, 2001.
[21]  M. Horwitz, F. Q. Li, D. Albani et al., “Leukemia in severe congenital neutropenia: defective proteolysis suggests new pathways to malignancy and opportunities for therapy,” Cancer Investigation, vol. 21, no. 4, pp. 579–587, 2003.
[22]  Y. Ichimura, T. Kirisako, T. Takao et al., “A ubiquitin-like system mediates protein lipidation,” Nature, vol. 408, no. 6811, pp. 488–492, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413