全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein Target Quantification Decision Tree

DOI: 10.1155/2013/701247

Full-Text   Cite this paper   Add to My Lib

Abstract:

The utility of mass spectrometry-(MS-) based proteomic platforms and their clinical applications have become an emerging field in proteomics in recent years. Owing to its selectivity and sensitivity, MS has become a key technological platform in proteomic research. Using this platform, a large number of potential biomarker candidates for specific diseases have been reported. However, due to lack of validation, none has been approved for use in clinical settings by the Food and Drug Administration (FDA). Successful candidate verification and validation will facilitate the development of potential biomarkers, leading to better strategies for disease diagnostics, prognostics, and treatment. With the recent new developments in mass spectrometers, high sensitivity, high resolution, and high mass accuracy can be achieved. This greatly enhances the capabilities of protein biomarker validation. In this paper, we describe and discuss recent developments and applications of targeted proteomics methods for biomarker validation. 1. Introduction Recently, advanced proteomics technology and instrumentations has allowed for the generation of more than a thousand candidate biomarkers from the profiling of complex biological samples. Most of these proteins were from under powered studies or pooled samples that had a large number of hypotheses being tested in similar conditions. Protein biomarkers have great potential to improve diagnosis, guide targeted therapy, and monitor therapeutic response across a wide range of diseases [1]. Mass spectrometry-based proteomics has become a powerful tool for biomarker discovery and validation in recent years [2–4]. However, to date, no protein biomarker identified using proteomics has been introduced into clinical use [5–9]. Although “omics” technologies have revolutionized the discovery of candidate biomarkers, several major technological limitations, including sensitivity, accuracy, and reproducibility, have hindered the application of proteomics as a platform for biomarker research. Discovery proteomics has enabled the identification of hundreds of biomarker candidates in many disease types, but the lack of well-established methods for validation of the biomarker candidates involving a large number of clinical samples is blamed for the low yield of clinically useful biomarkers [10–12]. The linkage between new technological platforms and the discovery of truly disease-related biomarkers needs to be established before moving candidate protein biomarkers toward clinical implementation. Recent advances in mass spectrometry and

References

[1]  A. D. Westont and L. Hood, “Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine,” Journal of Proteome Research, vol. 3, no. 2, pp. 179–196, 2004.
[2]  T. E. Angel, U. K. Aryal, S. M. Hengel, et al., “Mass spectrometry-based proteomics: existing capabilities and future directions,” Chemical Society Reviews, vol. 41, pp. 3912–3928, 2012.
[3]  E. S. Boja and H. Rodriguez, “Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins,” Proteomics, vol. 12, pp. 1093–1110, 2012.
[4]  J. R. Whiteaker, C. Lin, J. Kennedy et al., “A targeted proteomics-based pipeline for verification of biomarkers in plasma,” Nature Biotechnology, vol. 29, no. 7, pp. 625–634, 2011.
[5]  V. M. Faca, “Human mesenchymal stromal cell proteomics: contribution for identification of new markers and targets for medicine intervention,” Expert Review of Proteomics, vol. 9, pp. 217–230, 2012.
[6]  S. Jacquet, X. Yin, P. Sicard et al., “Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis,” Molecular and Cellular Proteomics, vol. 8, no. 12, pp. 2687–2699, 2009.
[7]  A. V. G. Edwards, M. Y. White, and S. J. Cordwell, “The role of proteomics in clinical cardiovascular biomarker discovery,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1824–1837, 2008.
[8]  M. S. Sabel, “Surgical considerations in early-stage breast cancer: lessons learned and future directions,” Seminars in Radiation Oncology, vol. 21, no. 1, pp. 10–19, 2011.
[9]  M. S. Sabel, Y. Liu, and D. M. Lubman, “Proteomics in melanoma biomarker discovery: great potential, many obstacles,” International Journal of Proteomics, vol. 2011, Article ID 181890, 8 pages, 2011.
[10]  T. D. Veenstra, “Proteomics research in breast cancer: balancing discovery and hypothesis-driven studies,” Expert Review of Proteomics, vol. 8, no. 2, pp. 139–141, 2011.
[11]  H. J. Issaq, T. J. Waybright, and T. D. Veenstra, “Cancer biomarker discovery: opportunities and pitfalls in analytical methods,” Electrophoresis, vol. 32, no. 9, pp. 967–975, 2011.
[12]  Z. Meng and T. D. Veenstra, “Targeted mass spectrometry approaches for protein biomarker verification,” Journal of Proteomics, vol. 74, pp. 2650–2659, 2011.
[13]  C. Prakash, C. L. Shaffer, L. M. Tremaine et al., “Application of liquid chromatography-accelerator mass spectrometry (LC-AMS) to evaluate the metabolic profiles of a drug candidate in human urine and plasma,” Drug Metabolism Letters, vol. 1, no. 3, pp. 226–231, 2007.
[14]  M. Carrascal, K. Schneider, R. E. Calaf et al., “Quantitative electrospray LC-MS and LC-MS/MS in biomedicine,” Journal of Pharmaceutical and Biomedical Analysis, vol. 17, no. 6-7, pp. 1129–1138, 1998.
[15]  A. James and C. Jorgensen, “Basic design of MRM assays for peptide quantification,” Methods in Molecular Biology, vol. 658, pp. 167–185, 2010.
[16]  B. Han and R. E. Higgs, “Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers,” Briefings in Functional Genomics and Proteomics, vol. 7, no. 5, pp. 340–354, 2008.
[17]  Y. Q. Xia, S. T. Wu, and M. Jemal, “LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components,” Analytical Chemistry, vol. 80, no. 18, pp. 7137–7143, 2008.
[18]  M. Hossain, D. T. Kaleta, E. W. Robinson et al., “Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface,” Molecular and Cellular Proteomics, vol. 10, no. 2, pp. M000062–MCP201, 2011.
[19]  T. Fortin, A. Salvador, J. P. Charrier et al., “Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum,” Analytical Chemistry, vol. 81, no. 22, pp. 9343–9352, 2009.
[20]  R. M. Lequin, “Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA),” Clinical Chemistry, vol. 51, no. 12, pp. 2415–2418, 2005.
[21]  http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070107.pdf.
[22]  N. L. Anderson, “The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum,” Clinical Chemistry, vol. 56, no. 2, pp. 177–185, 2010.
[23]  R. P. Ekins, “Multi-analyte immunoassay,” Journal of Pharmaceutical and Biomedical Analysis, vol. 7, no. 2, pp. 155–168, 1989.
[24]  W. de Jager and G. T. Rijkers, “Solid-phase and bead-based cytokine immunoassay: a comparison,” Methods, vol. 38, no. 4, pp. 294–303, 2006.
[25]  K. G. Oliver, J. R. Kettman, and R. J. Fulton, “Multiplexed analysis of human cytokines by use of the flowmetrix system,” Clinical Chemistry, vol. 44, no. 9, pp. 2057–2060, 1998.
[26]  Q. Fu, J. Zhu, and J. E. van Eyk, “Comparison of multiplex immunoassay platforms,” Clinical Chemistry, vol. 56, no. 2, pp. 314–318, 2010.
[27]  F. S. Apple and A. S. Jaffe, “Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study,” Circulation, vol. 104, no. 22, pp. E125–126, 2001.
[28]  A. S. Jaffe, “New standard for the diagnosis of acute myocardial infarction,” Cardiology in Review, vol. 9, no. 6, pp. 318–322, 2001.
[29]  M. Hartmann, J. Roeraade, D. Stoll, M. F. Templin, and T. O. Joos, “Protein microarrays for diagnostic assays,” Analytical and Bioanalytical Chemistry, vol. 393, no. 5, pp. 1407–1416, 2009.
[30]  J. Gantelius, M. Hartmann, J. M. Schwenk, J. Roeraade, H. Andersson-Svahn, and T. O. Joos, “Magnetic bead-based detection of autoimmune responses using protein microarrays,” New Biotechnology, vol. 26, no. 6, pp. 269–276, 2009.
[31]  C. A. Spencer, M. Takeuchi, M. Kazarosyan et al., “Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 4, pp. 1121–1127, 1998.
[32]  E. E. Niederkofler, U. A. Kiernan, J. O'Rear et al., “Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure,” Circulation, vol. 1, no. 4, pp. 258–264, 2008.
[33]  N. L. Anderson, N. G. Anderson, L. R. Haines, D. B. Hardie, R. W. Olafson, and T. W. Pearson, “Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA),” Journal of Proteome Research, vol. 3, no. 2, pp. 235–244, 2004.
[34]  A. N. Hoofnagle, J. O. Becker, M. H. Wener, and J. W. Heinecke, “Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry,” Clinical Chemistry, vol. 54, no. 11, pp. 1796–1804, 2008.
[35]  M. F. Lopez, T. Rezai, D. A. Sarracino et al., “Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants,” Clinical Chemistry, vol. 56, no. 2, pp. 281–290, 2010.
[36]  N. L. Anderson, N. G. Anderson, T. W. Pearson et al., “A human proteome detection and quantitation project,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 883–886, 2009.
[37]  L. Anderson and C. L. Hunter, “Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins,” Molecular and Cellular Proteomics, vol. 5, no. 4, pp. 573–588, 2006.
[38]  D. Domanski, D. S. Smith, C. A. Miller, et al., “High-flow multiplexed MRM-based analysis of proteins in human plasma without depletion or enrichment,” Clinics in Laboratory Medicine, vol. 31, pp. 371–384, 2011.
[39]  N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002.
[40]  T. Shi, J. Y. Zhou, M. A. Gritsenko, et al., “IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery,” Methods, vol. 56, pp. 246–253, 2012.
[41]  M. J. Berna, Y. Zhen, D. E. Watson, J. E. Hale, and B. L. Ackermann, “Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis,” Analytical Chemistry, vol. 79, no. 11, pp. 4199–4205, 2007.
[42]  J. A. Gutierrez, P. J. Solenberg, D. R. Perkins et al., “Ghrelin octanoylation mediated by an orphan lipid transferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6320–6325, 2008.
[43]  N. L. Anderson, A. Jackson, D. Smith, D. Hardie, C. Borchers, and T. W. Pearson, “SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 995–1005, 2009.
[44]  A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, and F. M. White, “Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5860–5865, 2007.
[45]  P. Drogaris, V. Villeneuve, C. Pomies, et al., “Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation,” Scientific Reports, vol. 2, p. 220, 2012.
[46]  Y. H. Ahn, P. M. Shin, N. R. Oh, G. W. Parka, H. Kimb, and J. S. Yoo, “A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma,” Journal of Proteomics, vol. 75, pp. 5507–5515, 2012.
[47]  H. Zhang, X. J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nature Biotechnology, vol. 21, no. 6, pp. 660–666, 2003.
[48]  B. Sun, J. A. Ranish, A. G. Utleg et al., “Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics,” Molecular and Cellular Proteomics, vol. 6, no. 1, pp. 141–149, 2007.
[49]  H. John, M. Walden, S. Sch?fer, S. Genz, and W. G. Forssmann, “Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography-mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 378, no. 4, pp. 883–897, 2004.
[50]  B. Han, M. Copeland, A. G. Geiser et al., “Development of a highly sensitive, high-throughput, mass spectrometry-based assay for rat procollagen type-I N-terminal propeptide (PINP) to measure bone formation activity,” Journal of Proteome Research, vol. 6, no. 11, pp. 4218–4229, 2007.
[51]  H. Keshishian, T. Addona, M. Burgess, E. Kuhn, and S. A. Carr, “Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution,” Molecular and Cellular Proteomics, vol. 6, no. 12, pp. 2212–2229, 2007.
[52]  M. Gilar, P. Olivova, A. E. Daly, and J. C. Gebler, “Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions,” Journal of Separation Science, vol. 28, no. 14, pp. 1694–1703, 2005.
[53]  L. V. DeSouza, A. D. Romaschin, T. J. Colgan, and K. W. M. Siu, “Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer,” Analytical Chemistry, vol. 81, no. 9, pp. 3462–3470, 2009.
[54]  S. J. Shah, K. H. Yu, V. Sangar, S. I. Parry, and I. A. Blair, “Identification and quantification of preterm birth biomarkers in human cervicovaginal fluid by liquid chromatography/tandem mass spectrometry,” Journal of Proteome Research, vol. 8, no. 5, pp. 2407–2417, 2009.
[55]  T. Shi, T. L. Fillmore, X. Sun, et al., “Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 15395–15400, 2012.
[56]  C. S. Ang and E. C. Nice, “Targeted in-gel MRM: a hypothesis driven approach for colorectal cancer biomarker discovery in human feces,” Journal of Proteome Research, vol. 9, no. 9, pp. 4346–4355, 2010.
[57]  P. J. Halvey, C. R. Ferrone, and D. C. Liebler, “GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples,” Journal of Proteome Research, vol. 11, pp. 3908–3913, 2012.
[58]  N. Rifai, M. A. Gillette, and S. A. Carr, “Protein biomarker discovery and validation: the long and uncertain path to clinical utility,” Nature Biotechnology, vol. 24, no. 8, pp. 971–983, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133