There is a general consensus that Crohn’s disease (CD) develops as the result of immune-mediated tissue damage triggered by infections with intestinal microbial agents. Based on the results of existing microbiological, molecular, and immunological studies, Klebsiella microbe seems to have a key role in the initiation and perpetuation of the pathological damage involving the gut and joint tissues in patients with CD. Six different gastroenterology centres in the UK have reported elevated levels of antibodies to Klebsiella in CD patients. There is a relationship between high intake of starch-containing diet, enhanced growth of gut microbes, and the production of pullulanases by Klebsiella. It is proposed that eradication of these microbes by the use of antibiotics and low starch diet, in addition to the currently used treatment, could help in alleviating or halting the disease process in CD. 1. Introduction Crohn’s disease (CD) is a chronic, progressive, and potentially disabling disease, characterised by relapsing and remitting episodes of transmural inflammation of the gastrointestinal tract which might be associated with arthritic manifestations [1]. Both CD and ulcerative colitis (UC) can be categorized under the name of inflammatory bowel disease (IBD). The differentiation between UC and CD is mainly based on clinical manifestations and the scale of bowel involvements. Patients with either CD or UC, however, are likely to have associated extraintestinal manifestations [2]. IBD is classified as one of the constituents of a group of diseases collectively termed spondyloarthropathies (SpAs). The other entities of this group include ankylosing spondylitis (AS), reactive arthritis, psoriatic arthropathy, and undifferentiated SpA [3]. There are certain features frequently associated with this group of diseases and these include spinal/sacroiliac arthritis, oligoarthritis, enthesitis, uveitis, negativity for rheumatoid factors, and a positive family history. A positive family history and a high degree of association of SpAs with HLA-B27 genetic markers have placed these conditions under the umbrella of what is called “B27 diseases” [4]. Furthermore, patients with CD seem to share more genetic, clinical, laboratory, immunological, and pathological features with AS patients [5–7]. CD is a relatively common condition involving millions of people all around the world. It usually affects a younger age group with a worldwide distribution. It has a high impact on the psychological condition [8], as well as the social status and work abilities [9] in patients with
References
[1]
D. C. Baumgart and W. J. Sandborn, “Crohn’s disease,” The Lancet, vol. 380, no. 9853, pp. 1590–1605, 2012.
[2]
G. Latella and C. Papi, “Crucial steps in the natural history of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 18, no. 29, pp. 3790–3799, 2012.
[3]
D. Baeten, M. Breban, R. Lories, G. Schett, and J. Sieper, “Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype?” Arthritis and Rheumatism, vol. 65, no. 1, pp. 12–20, 2013.
[4]
A. Ebringer and T. Rashid, “‘B27 disease’ is a new autoimmune disease that affects millions of people,” Annals of the New York Academy of Sciences, vol. 1110, pp. 112–120, 2007.
[5]
A. Ebringer, T. Rashid, H. Tiwana, and C. Wilson, “A possible link between Crohn's disease and ankylosing spondylitis via Klebsiella infections,” Clinical Rheumatology, vol. 26, no. 3, pp. 289–297, 2007.
[6]
T. Rashid, A. Ebringer, H. Tiwana, and M. Fielder, “Role of Klebsiella and collagens in Crohn's disease: a new prospect in the use of low-starch diet,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 843–849, 2009.
[7]
T. Rashid, C. Wilson, and A. Ebringer, “The link between ankylosing spondylitis, Crohn’s disease, Klebsiella and starch consumption,” Clinical and Developmental Immunology, vol. 2013, Article ID 872632, 9 pages, 2013.
[8]
S. Guloksuz, M. Wichers, G. Kenis, et al., “Depressive symptoms in Crohn’s disease: relationship with immune activation and tryptophan availability,” PLoS ONE, vol. 8, no. 3, Article ID e60435, 2013.
[9]
H. Stjernman, C. Tysk, S. Almer, M. Str?m, and H. Hjortswang, “Unfavourable outcome for women in a study of health-related quality of life, social factors and work disability in Crohn's disease,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 8, pp. 671–679, 2011.
[10]
E. V. Loftus Jr., “Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences,” Gastroenterology, vol. 126, no. 6, pp. 1504–1517, 2004.
[11]
N. A. Molodecky, I. S. Soon, D. M. Rabi et al., “Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review,” Gastroenterology, vol. 142, no. 1, pp. 46.e42–54.e42, 2012.
[12]
F. Yi, M. Chen, M. Huang, et al., “The trend in newly diagnosed Crohn’s disease and extraintestinal manifestations of Crohn’s disease in central China: a retrospective study of a single center,” European Journal of Gastroenterology and Hepatology, vol. 24, no. 12, pp. 1424–1429, 2012.
[13]
A. Frolkis, L. A. Dieleman, H. Barkema, et al., “Environment and the inflammatory bowel diseases,” Canadian Journal of Gastroenterology, vol. 27, no. 3, pp. 18–24, 2013.
[14]
J. Halfvarson, “Genetics in twins with Crohn's disease: less pronounced than previously believed?” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 6–12, 2011.
[15]
H. Elding, W. Lau, D. M. Swallow, and N. Maniatis, “Refinement in localization and identification of gene regions associated with Crohn’s disease,” American Journal of Human Genetics, vol. 92, no. 1, pp. 107–113, 2013.
[16]
S. A. Naser, M. Arce, A. Khaja et al., “Role of ATG16L, NOD2 and IL23R in Crohn's disease pathogenesis,” World Journal of Gastroenterology, vol. 18, no. 5, pp. 412–424, 2012.
[17]
T. R. Orchard, H. Holt, L. Bradbury et al., “The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 29, no. 2, pp. 193–197, 2009.
[18]
J. Braun, M. Bollow, G. Remlinger, et al., “Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors,” Arthritis and Rheumatism, vol. 41, no. 1, pp. 58–67, 1998.
[19]
B. Thjodleifsson, á. J. Geirsson, S. Bj?rnsson, and I. Bjarnason, “A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2633–2639, 2007.
[20]
A. B. Onderdonk, J. A. Richardson, R. E. Hammer, and J. D. Taurog, “Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease,” Infection and Immunity, vol. 66, no. 12, pp. 6022–6023, 1998.
[21]
E. Kuwahara, K. Asakura, Y. Nishiwaki et al., “Effects of family history on inflammatory bowel disease characteristics in Japanese patients,” Journal of Gastroenterology, vol. 47, no. 9, pp. 961–968, 2012.
[22]
R. N. Allan, P. Pease, and J. P. Ibbotson, “Clustering of Crohn's disease in a Cotswold village,” Quarterly Journal of Medicine, vol. 59, no. 229, pp. 473–478, 1986.
[23]
J. Aisenberg and H. D. Janowitz, “Cluster of inflammatory bowel disease in three close college friends?” Journal of Clinical Gastroenterology, vol. 17, no. 1, pp. 18–20, 1993.
[24]
X. Li, J. Sundquist, K. Hemminki, and K. Sundquist, “Risk of inflammatory bowel disease in first- and second-generation immigrants in Sweden: a nationwide follow-up study,” Inflammatory Bowel Diseases, vol. 17, no. 8, pp. 1784–1791, 2011.
[25]
M. Joossens, M. Simoens, S. Vermeire, X. Bossuyt, K. Geboes, and P. Rutgeerts, “Contribution of genetic and environmental factors in the pathogenesis of Crohn's disease in a large family with multiple cases,” Inflammatory Bowel Diseases, vol. 13, no. 5, pp. 580–584, 2007.
[26]
L. Peyrin-Biroulet, E. V. Loftus, J.-F. Colombel, and W. J. Sandborn, “The natural history of adult crohn's disease in population-based cohorts,” American Journal of Gastroenterology, vol. 105, no. 2, pp. 289–297, 2010.
[27]
A. Sonnenberg, “Seasonal variation of enteric infections and inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 7, pp. 955–959, 2008.
[28]
F. Castiglione, M. Diaferia, F. Morace et al., “Risk factors for inflammatory bowel diseases according to the “hygiene hypothesis”: a case-control, multi-centre, prospective study in Southern Italy,” Journal of Crohn's and Colitis, vol. 6, no. 3, pp. 324–329, 2012.
[29]
I. C. Roberts-Thomson, J. Fon, W. Uylaki, A. G. Cummins, and S. Barry, “Cells, cytokines and inflammatory bowel disease: a clinical perspective,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 6, pp. 703–716, 2011.
[30]
S. J. Brown and L. Mayer, “The immune response in inflammatory bowel disease,” American Journal of Gastroenterology, vol. 102, no. 9, pp. 2058–2069, 2007.
[31]
J. D. Taurog, J. A. Richardson, J. T. Croft et al., “The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2359–2364, 1994.
[32]
G. Bamias, A. Okazawa, J. Rivera-Nieves et al., “Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis,” Journal of Immunology, vol. 178, no. 3, pp. 1809–1818, 2007.
[33]
P. Ricanek, S. M. Lothe, S. A. Frye, A. Rydning, M. H. Vatn, and T. Tonjum, “Gut bacterial profile in patients newly diagnosed with treatment-na?ve Crohn’s disease,” Clinical and Experimental Gastroenterology, vol. 5, pp. 173–186, 2012.
[34]
T. Rashid and A. Ebringer, “Gut-mediated and HLA-B27-associated arthritis: an emphasis on ankylosing spondylitis and Crohn's disease with a proposal for the use of new treatment,” Discovery Medicine, vol. 12, no. 64, pp. 187–194, 2011.
[35]
E. H?ring, D. G?pfert, G. Schr?ter, and U. von Gaisberg, “Frequency and spectrum of microorganisms isolated from biopsy specimens in chronic colitis,” Endoscopy, vol. 23, no. 6, pp. 325–327, 1991.
[36]
A. Plessier, J. Cosnes, J.-P. Gendre, and L. Beaugerie, “Intercurrent Klebsiella oxytoca colitis in a patient with Crohn's disease,” Gastroenterologie Clinique et Biologique, vol. 26, no. 8-9, pp. 799–800, 2002.
[37]
B. Kleessen, A. J. Kroesen, H. J. Buhr, and M. Blaut, “Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls,” Scandinavian Journal of Gastroenterology, vol. 37, no. 9, pp. 1034–1041, 2002.
[38]
R. S. Walmsley, A. Anthony, R. Sim, R. E. Pounder, and A. J. Wakefield, “Absence of Escherichia coli, Listeria monocytogenes, and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues,” Journal of Clinical Pathology, vol. 51, no. 9, pp. 657–661, 1998.
[39]
P. L. Schwimmbeck, D. T. Y. Yu, and M. B. A. Oldstone, “Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter's syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease,” Journal of Experimental Medicine, vol. 166, no. 1, pp. 173–181, 1987.
[40]
M. Fielder, S. J. Pirt, I. Tarpey et al., “Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae,” FEBS Letters, vol. 369, no. 2-3, pp. 243–248, 1995.
[41]
C. Wilson, T. Rashid, H. Tiwana et al., “Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis,” Journal of Rheumatology, vol. 30, no. 5, pp. 972–978, 2003.
[42]
N. Paeng, A. Morikawa, Y. Kato et al., “Experimental murine model for autoimmune enterocolitis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 1, pp. 45–52, 1999.
[43]
K. Takahashi, Y. Kato, T. Sugiyama et al., “Production of murine collagen-induced arthritis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 8, pp. 795–801, 1999.
[44]
J. P. Ibbotson, P. E. Pease, and R. N. Allan, “Serological studies in Crohn's disease,” European Journal of Clinical Microbiology, vol. 6, no. 3, pp. 286–290, 1987.
[45]
R. Cooper, S. M. Fraser, R. D. Sturrock, and C. G. Gemmell, “Raised titres of anti-Klebsiella IgA in ankylosing spondylitis, rheumatoid arthritis, and inflammatory bowel disease,” British Medical Journal, vol. 296, no. 6634, pp. 1432–1434, 1988.
[46]
S. O'Mahony, N. Anderson, G. Nuki, and A. Ferguson, “Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn's disease,” Annals of the Rheumatic Diseases, vol. 51, no. 12, pp. 1296–1300, 1992.
[47]
H. Tiwana, C. Wilson, R. S. Walmsley et al., “Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn's disease and ulcerative colitis,” Rheumatology International, vol. 17, no. 1, pp. 11–16, 1997.
[48]
H. Tiwana, R. S. Walmsley, C. Wilson et al., “Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis,” British Journal of Rheumatology, vol. 37, no. 5, pp. 525–531, 1998.
[49]
H. Tiwana, R. S. Natt, R. Benitez-Brito et al., “Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn's disease and ankylosing spondylitis,” Rheumatology, vol. 40, no. 1, pp. 15–23, 2001.
[50]
H. J. Flint, “The impact of nutrition on the human microbiome,” Nutrition Reviews, vol. 70, Supplement 1, pp. 10–13, 2012.
[51]
K. P. Scott, S. W. Gratz, P. O. Sheridan, H. J. Flint, and S. H. Duncan, “The influence of diet on the gut microbiota,” Pharmacological Research, vol. 69, no. 1, pp. 52–60, 2013.
[52]
J. X. Liu, Q. Y. Yue, B. Y. Gao, Y. Wang, Q. Li, and P. D. Zhang, “Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi,” Water Science and Technology, vol. 67, no. 8, pp. 1802–1808, 2013.
[53]
B. R. Cruz, A. S. Abraao, A. M. Lemos, and F. M. Nunes, “Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill),” Carbohydrate Polymers, vol. 94, no. 1, pp. 594–602, 2013.
[54]
H. Zhang, Y. Tian, Y. Bai, X. Xu, and Z. Jin, “Structure and properties of maize starch processed with a combination of α-amylase and pullulanase,” International Journal of Biological Macromolecules, vol. 52, pp. 38–44, 2013.
[55]
G. Ali, C. Rihouey, D. Le Cerf, and L. Picton, “Effect of carboxymethyl groups on degradation of modified pullulan by pullulanase from Klebsiella pneumonia,” Carbohydrate Polymers, vol. 93, no. 1, pp. 109–115, 2013.
[56]
S. L. Hii, J. S. Tan, T. C. Ling, and A. B. Ariff, “Pullulanase: role in starch hydrolysis and potential industrial applications,” Enzyme Research, vol. 2012, Article ID 921362, 14 pages, 2012.
[57]
H. Nakai, M. Kitaoka, B. Svensson, and K. Ohtsubo, “Recent development of phosphorylases possessing large potential for oligosaccharide synthesis,” Current Opinion in Chemical Biology, vol. 17, no. 2, pp. 301–309, 2013.
[58]
F. Shanahan, “The colonic microbiota and colonic disease,” Current Gastroenterology Reports, vol. 14, no. 5, pp. 446–452, 2012.
[59]
K. M. J. van Laere, R. Hartemink, M. Bosveld, H. A. Schols, and A. G. J. Voragen, “Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1644–1652, 2000.
[60]
H. N. Englyst and G. T. Macfarlane, “Breakdown of resistant and readily digestible starch by human gut bacteria,” Journal of the Science of Food and Agriculture, vol. 37, no. 7, pp. 699–706, 1986.
[61]
I. H. Anderson, A. S. Levine, and M. D. Levitt, “Incomplete absorption of the carbohydrate in all-purpose wheat flour,” The New England Journal of Medicine, vol. 304, no. 15, pp. 891–892, 1981.
[62]
B. Kleessen, G. Stoof, J. Proll, D. Schmiedl, J. Noack, and M. Blaut, “Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats,” Journal of Animal Science, vol. 75, no. 9, pp. 2453–2462, 1997.
[63]
A. Ebringer, M. Baines, M. Childerstone, and M. Ghuloom, “Etiopathogenesis of ankylosing spondylitis and the cross-tolerance hypothesis,” in Advances in Inflammation Research-the Spondyloarthropathies, M. Ziff and S. B. Cohen, Eds., pp. 101–128, Raven Press, New York, NY, USA, 1985.
[64]
R. G. McGuire and R. D. Hagenmaier, “Shellac formulations to reduce epiphytic survival of coliform bacteria on citrus fruit postharvest,” Journal of Food Protection, vol. 64, no. 11, pp. 1756–1760, 2001.
[65]
G. Paturi, T. Nyanhanda, C. A. Butts, T. D. Herath, J. A. Monro, and J. Ansell, “Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat,” Journal of Food Science, vol. 77, no. 10, pp. 216–223, 2012.
[66]
C. Randall, J. Vizuete, G. Wendorf, B. Ayyar, and G. Constatine, “Current and emerging strategies in the management of Crohn’s disease,” Best Practice & Research, vol. 26, no. 5, pp. 601–610, 2013.
[67]
T. Ali, S. Kaitha, S. Mahmood, A. Ftesi, J. Stone, and M. S. Bronze, “Clinical use of anti-TNF therapy and increased risk of infections,” Drug, Healthcare and Patient Safety, vol. 5, pp. 79–99, 2013.
[68]
G. Kouklakis, E. I. Efremidou, M. Pitiakoudis, N. Liratzopoulos, and A. C. Polychronidis, “Development of primary malignant melanoma during treatment with a TNF-α antagonist for severe Crohn’s disease: a case report and review of the hypothetical association between TNF- α blockers and cancer,” Drug Design, Development and Therapy, vol. 7, pp. 195–199, 2013.
[69]
K. C. Lu and S. R. Hunt, “Surgical management of Crohn’s disease,” The Surgical Clinics of North America, vol. 93, no. 1, pp. 167–185, 2013.
[70]
P. Dewint, B. E. Hansen, E. Verhey, et al., “Adalmumab combined with ciprofloxacin is superior to adalmumab monotherapy in perianal fistula closure in Crohn’s disease: a randomised, double-blind, placebo controlled trial (ADAFI),” Gut. In press.
[71]
R. S. Longmann and A. Swaminath, “Microbial manipulation as primary therapy for Crohn’s disease,” World Journal of Gastroenterology, vol. 19, no. 10, pp. 1513–1516, 2013.
[72]
M. Guslandi, “Rifaximin in the treatment of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 17, no. 42, pp. 4643–4646, 2011.
[73]
K. J. Khan, T. A. Ullman, A. C. Ford et al., “Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis,” American Journal of Gastroenterology, vol. 106, no. 4, pp. 661–673, 2011.
[74]
C. Prantera, H. Lochs, M. Grimaldi, S. Danese, M. L. Scribano, and P. Gionchetti, “Rifaximin-extended intestinal release induces remission in patients with moderately active crohn's disease,” Gastroenterology, vol. 142, no. 3, pp. 473–481, 2012.
[75]
A. Ebringer and C. Wilson, “The use of a low starch diet in the treatment of patients suffering from ankylosing spondylitis,” Clinical Rheumatology, vol. 15, no. 1, pp. 62–66, 1996.
[76]
A. Ebringer and C. Wilson, “Ankylosing spondylitis and diet,” in Food Allergy and Intolerance, J. Brostoff and S. J. Challacombe, Eds., pp. 761–768, Saunders, London, UK, 2002.