Objective. Anticyclic citrullinated peptide antibodies (anti-CCP) testing is useful in the diagnosis of rheumatoid arthritis (RA) with high specificity. Arthritis is a very common clinical manifestation in children with familial Mediterranean fever (FMF). The aim of the study was to show the presence of anti-CCP antibodies in child individuals diagnosed with FMF. Material and Methods. The study groups comprised one hundred and twenty-six patients (126) diagnosed with FMF (female/male ( ): 66/60) and 50 healthy controls (female/male ( ): 25/25). Clinical and laboratory assessments of the FMF patients were performed during attack-free periods. Erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP), fibrinogen, and anti-CCP antibody levels were measured. Results. Anti-CCP was negative in healthy controls and also in all FMF patients. There was not a significant difference in anti-CCP between the patient and the control groups. Our study has shown that anti-CCP was correlated moderately with age ( ; ), duration of illness ( ; ), and colchicine therapy ( ; ). Conclusion. Our data show that anti-CCP antibodies are not associated with FMF. Anti-CCP does not have a priority for identifying FMF arthritis from the other inflammatory arthritis. 1. Introduction Familial Mediterranean fever (FMF) is an autosomal recessive disease that is prevalent among eastern Mediterranean populations, mainly non-Ashkenazi Jews, Armenians, Turks, and Arabs [1]. Patients suffer from recurrent self-limited inflammatory febrile attacks, abdominal, chest, or joint pain. It is still unknown what triggers or ends these periodical attacks [2, 3]. Cyclic citrullinated peptide (CCP) autoantibodies bind antigenic determinants that contain unusual amino acid citrulline. Citrulline is a nonstandard amino acid as it is not incorporated into proteins during protein synthesis [4]. Citrullination or deimination is an enzyme-catalysed process in which the positively charged NH2-group of amino acid arginine is hydrolyzed to a neutral oxygen group. It is this oxygen group of peptidylcitrulline that is specifically recognized by autoantibodies in rheumatoid arthritis (RA). The citrulline residues are essential part of the antigenic determinants recognized by the RA antibodies. So anti-CCP testing is particularly useful in the diagnosis of RA with high specificity present early in the disease process [5, 6]. Although anti-cyclic citrullinated peptide (anti-CCP) levels were investigated in several times in rheumatoid arthritis, rare investigation in FMF arthritis has been done. Arthritis
References
[1]
M. Tunca, S. Akar, F. Onen, et al., “Familial Mediterranean Fever (FMF) in Turkey: results of a nationwide multicenter study,” Medicine, vol. 84, no. 1, pp. 1–11, 2005.
[2]
S. Ar?ca, C. Ozer, V. Ar?ca, A. Karaku?, T. Celik, and R. Güne?a?ar, “Evaluation of the mean platelet volume in children with familial Mediterranean fever,” Rheumatology International, vol. 32, no. 11, pp. 3559–3563, 2012.
[3]
I. Ben-Zvi and A. Livneh, “Chronic inflammation in FMF: markers, risk factors, outcomes and therapy,” Nature Reviews Rheumatology, vol. 7, no. 2, pp. 105–112, 2011.
[4]
G. J. M. Pruijn, E. R. Vossenaar, J. W. Drijfhout, W. J. van Venrooij, and A. J. W. Zendman, “Anti-CCP antibody detection facilitates early diagnosis and prognosis of rheumatoid arthritis,” Current Rheumatology Reviews, vol. 1, pp. 11–71, 2005.
[5]
T. B. Niewold, M. J. Harrison, and S. A. Paget, “Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis,” QJM, vol. 100, no. 4, pp. 193–201, 2007.
[6]
W. J. van Venrooij, J. M. Hazes, and H. Visser, “Anticitrullinated protein/peptide antibody and its role in the diagnosis and prognosis of early rheumatoid arthritis,” Netherlands Journal of Medicine, vol. 60, no. 10, pp. 383–388, 2002.
[7]
K. Stankovic and G. Grateau, “Auto inflammatory syndromes: diagnosis and treatment,” Joint Bone Spine, vol. 74, no. 6, pp. 544–550, 2007.
[8]
N. Ar?soy, ?. Kasap?opur, R. Kodako?lu, et al., “Articular involvement in childhood familial Mediterranean fever,” Clinical and Experimental Rheumatology, vol. 18, no. D6, p. 289, 2000.
[9]
F. Yal?inkaya, S. Ozen, Z. B. Oz?akar, et al., “A new set of criteria for the diagnosis of familial Mediterranean fever in childhood,” Rheumatology, vol. 48, no. 4, pp. 395–398, 2009.
[10]
E. Guler, E. Kaptanoglu, O. Sahin, F. Candan, E. Hayta, and H. Elden, “Autoantibodies are not associated with familial mediterranean fever,” Acta Reumatológica Portuguesa, vol. 37, no. 2, pp. 144–148, 2012.
[11]
S. Karatay, K. Yildirim, A. Erdal, H. Uzkeser, F. H. Erdem, and V. Yanmaz, “Anti-cyclic citrullinated peptide antibodies are not associated with familial mediterranean fever,” Journal of Back and Musculoskeletal Rehabilitation, vol. 23, no. 1, pp. 21–23, 2010.
[12]
M. Ceri, S. Unverdi, M. Altay, et al., “Anti-cyclic citrullinated peptides positivity rate in patients with familial Mediterranean fever,” Clinical and Experimental Rheumatology, vol. 28, no. 4, supplement 60, pp. S58–S61, 2010.
[13]
A. Uyanik, F. Albayrak, M. H. Uyanik, H. Dursun, M. Keles, and R. Cetinkaya, “Antibodies directed to cyclic citrullinated peptides in familial Mediterranean fever,” Rheumatology International, vol. 30, no. 4, pp. 467–471, 2010.
[14]
J. P. Riedemann, S. Mu?oz, and A. Kavanaugh, “The use of second generation anti-CCP antibody (anti-CCP2) testing in rheumatoid arthritis—a systematic review,” Clinical and Experimental Rheumatology, vol. 23, no. 5, pp. S69–S76, 2005.
[15]
R. Goldbach-Mansky, J. Lee, A. McCoy et al., “Rheumatoid arthritis associated autoantibodies in patients with synovitis of recent onset,” Arthritis Research, vol. 2, no. 3, pp. 236–243, 2000.
[16]
N. Bizzaro, G. Mazzanti, E. Tonutti, D. Villalta, and R. Tozzoli, “Diagnostic accuracy of the anti-citrulline antibody assay for rheumatoid arthritis,” Clinical Chemistry, vol. 47, no. 6, pp. 1089–1093, 2001.
[17]
E. Berglin, L. Padyukov, U. Sundin et al., “A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis,” Arthritis Research & Therapy, vol. 6, no. 4, pp. R303–R308, 2004.
[18]
S. W. Choi, M. K. Lim, D. H. Shin, J. J. Park, and S. C. Shim, “Diagnostic performances of anti-cyclic citrullinated peptides antibody and antifilaggrin antibody in Korean patients with rheumatoid arthritis,” Journal of Korean Medical Science, vol. 20, no. 3, pp. 473–478, 2005.
[19]
?. Kasap?opur, S. Altun, M. Aslan et al., “Diagnostic accuracy of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 63, no. 12, pp. 1687–1689, 2004.
[20]
A. Omar, I. Abo-Elyoun, H. Hussein et al., “Anti-cyclic citrullinated peptide (anti-CCP) antibody in juvenile idiopathic arthritis (JIA): correlations with disease activity and severity of joint damage (a multicenter trial),” Joint Bone Spine, vol. 80, no. 1, pp. 38–43, 2013.
[21]
J. K. H. Brunner and F. C. Sitzmann, “The diagnostic value of anti-cyclic citrullinated peptide (CCP) antibodies in children with juvenile idiopathic arthritis,” Clinical and Experimental Rheumatology, vol. 24, no. 4, pp. 449–451, 2006.
[22]
M. van Rossum, R. van Soesbergen, S. de Kort et al., “Anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with juvenile idiopathic arthritis,” Journal of Rheumatology, vol. 30, no. 4, pp. 825–828, 2003.
[23]
R. Gupta, M. M. Thabah, B. Vaidya, S. Gupta, R. Lodha, and S. K. Kabra, “Anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis,” Indian Journal of Pediatrics, vol. 77, no. 1, pp. 41–44, 2010.
[24]
S. K. Kim, J. Bae, H. Lee, J. H. Kim, S. H. Park, and J. Y. Choe, “Greater prevalence of seropositivity for anti-cyclic citrullinated peptide antibody in unaffected first-degree relatives in multicase rheumatoid arthritisaffected families,” The Korean Journal of Internal Medicine, vol. 28, no. 1, pp. 45–53, 2013.